Protein-Protein Interaction
Network



Bioinformatic methods

Homologous method to find Orthology

Prediction
— Sequence method
— Structural based method

Text mining

Infer from other networks, such as expression
profile, GO annotations.



Text mining

* Text mining, sometimes alternately referred
to as text data mining, refers to the process of
deriving high-quality or useful information
from text.

* The most famous application of text mining ?

* We want to get protein interaction
information from published literatures with
text mining methods.



Text mining papers

 Zhou and He (2008), Journal of Biomedical
Informatics, 41(2) 393.

* Mining Protein—Protein Interactions from Published
Literature Using Linguamatics 12E By: Judith Bandy,
David Milward, Sarah McQuay,

 Book Title: Protein Networks and Pathway Analysis
Series: Methods in Molecular Biology | Volume:
563 | Page Range: 3-13
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Zoning module. It splits documents into basic
building blocks for later analysis. Typical building
blocks are phrases, sentences, and paragraphs.



Text mining methods

* Computational linguishtics-based method
— Shallow parsing approaches
— Deep parsing approaches

* Rule-based methods
* Machine-learning and statistical approaches



Computational linguistics-based
methods

* To discover knowledge from unstructured
text, it is natural to employ computational
linguistics and philosophy, such as syntactic
parsing or semantic parsing to analyze
sentence structures.

 Methods of this category define grammars to
describe sentence structures and use parsers
to extract syntactic information and internal
dependencies within individual sentences.



Shallow parsing approaches

* Shallow parsers perform partial decomposition of a
sentence structure. They first break sentences into
none-overlapping chunks, then extract local
dependencies among chunks without reconstructing
the structure of an entire sentence.

* For example. shallow parser generate three kinds of
tags, such as syntactic, morphological, and boundary
tags. Based on the tagging results, subjects and objects
were recognized for the most frequently used verbs in
a collection of abstracts which were believed to
express the interactions between proteins, genes.



Deep parsing approaches

Systems based on deep parsing deal with the
structure of an entire sentence and therefore are
potentially more accurate.

Based on the way of constructing grammars,
deep parsing-based approaches can be divided
into two types: rationalist methods and
empiricist methods.

Rational methods define grammars by manual
efforts

Empiricist methods automatically generate the
grammar by some observations.



An example for deep parsing
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Rule-based methods

* Aset of rules need to be defined which may
be expressed in forms of regular expressions
over words or part-of-speech (POS) tags.

 Based on the rules, relations between entities

that are relevant to tasks such as proteins, can
be recognized.



Rule-based methods: 3 steps

1. Identification of protein names

— Protein names were first identified from sentences
based on a predefined biomedical entity dictionary.

2. Preprocessing compound or complex sentences

— Then predefined rules based on the generated POS
tags were applied to split those complex sentences.

3. Recognition of the protein—protein interaction

— For example, the defined word patterns could be “A
interact with B”, “interaction of A (with—and) B”,
“interaction (between]among) A and B” and so on. A
and B here indicate protein names.



Machine-learning and statistical
approaches

* deducing relationship between two terms
nased on their co-occurrences in literatures.

* |f two proteins frequently appear in the same
iterature, these two proteins might have an
Interaction.

e Bayesian classifier, Neuronal work, Support
Vector Machine



An Example

1. Build the training and testing corpora

Training corpus: 260 papers cited by the Database of Interacting
Proteins (DIP).

 Testing data which are denoted as Yeast MEDLINE were obtained
from MEDLINE

2. Construct discriminating words

— Adictionary was constructed containing the frequencies
of the 60,000 most common words used more than three
times in the Yeast MEDLINE abstracts

3. Score each abstract in Yeast MEDLINE by its
likelihood of discussing protein—protein interaction



Text-mined PPlIs

Shallow )
parsing
29
57
Deep
parsing 48
63.9
26.9
Rule based 47
60
80

73

69
90

80

70.2

65.6

70

87

80

34,343 sentences from abstracts retrieved from
MEDLINE

2,565 unseen abstracts extracted from MEDLINE
Training set consists of 500 abstracts from MEDLINE.

492 sentences out of 250,000 abstracts on cytosine in
MEDLINE

The test corpus consists of 100 randomly selected
scientific abstracts from MEDLINE

229 abstracts from MEDLINE correspond to 389
interactions from the DIP database

474 sentences from 50 abstracts retrieved using “E2F1”

3343 abstracts were obtained by querying MEDLINE

The top 50 biomedical papers were retrieved from the
Internet



Online tools

Online protein—protein interaction information
extraction systems

— BioRAT: a search engine and information extraction tool
for biological research bioinf.cs.ucl.ac.uk/biorat

— GeneWays: a system for automatically extracting,
analyzing, visualizing and integrating molecular pathway
data from the literature.
geneways.gcenomecenter.columbia.edu

— MedScan: a commercial system based on natural
language processing technology for automatic extraction
of biological facts from scientific literature such as
MEDLINE abstracts, and internal text document
www.ariadnegenomics.com/products/medscan.html




Online databases

*  Online tools for biomedical literature mining

CBioC: uses automatic text extraction as a starting point to initialize the interaction
database. cbioc.eas.asu.edu

Chilibot: a search software for MEDLINE literature database to rapidly identify
relationships between genes, proteins, or any keywords that the user might be
interested www.chilibot.net

GoPubMed: a search engineer that allows users to explore PubMed search results with
the Gene Ontology (GO). www.gopubmed.org

iHOP; converting the information in MEDLINE into one navigable resource using genes
and proteins as hyperlinks between sentences and abstracts.
www.ihop-net.org/UniPub/iHOP

iProLINK is a resource to facilitate text mining in the area of literature-based database
curation, named entity recognition, and protein ontology development.
pir.georgetown.edu/iprolink

PreBIND: It identifies papers describing interactions using a support vector machine.
prebind.bind.ca

PubGene is constructed to identify the relationships between genes and proteins,
diseases, cell processes, and so on based on their co-occurrences in the abstracts of
scientific papers etc. www.pubgene.org

Whatizit: a text processing tool that can identify molecular biology terms and linking
them to publicly available databases. www.ebi.ac.uk/webservices/whatizit/info.jsf
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Databases that store interaction data

Database of Interacting Proteins (DIP),
http://dip.doe-mbi.ucla.edu/

Biomolecular Interaction Network Database (BIND),
http://www.bind.ca/

Molecular Interactions Database (MINT),
http://160.80.34.4/mint/

INTERACT http://www.ebi.ac.uk/intact/index.html
PIBASE, http://alto.compbio.ucsf.edu/pibase/

MIPS contains interaction data (both direct and clusters)
for yeast

SCOPPI, http://www.scoppi.org/

Prolinks,
http://mysqgl5.mbi.ucla.edu/cgi-bin/functionator/pronav
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Database of Interactin g Proteins

. IMEx
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Search by:[protein] [sequence] [motif] [article] [pathBLAST]
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Jobs
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Tumor suppressor gene P53, PID ID “<DIP:369N>"




DIP Interaction Details

DIP LINK
I DIP
88484E
DIP PIR DNMS53 SwissProt P02340 GenBank gi:2144761
369N Name/Description Cellular tumor antigen p53
DIP PIR SwissProt Q60974 GenBank
32548N Name/Description Nuclear receptor corepressor 1
Evidence Help
Type Method Details Source Curation |[IMEx
E(d) |anti bait coimmunoprecipitation R PMID:19011633 DIP B

v

SMSC(1)

The IMEx Consortium




DIP services

Database of Interacting Proteins - o

Register
Statistics

[SERVICES:top][EPRI][PVM][DPV] [Help][LOGIN]

DIP SERVICES

Large collections of data, such as the DIP database that gathers information about nearly 11,000 protein-protein interactions, provide a unique
opportunity for data anaysis.

The DIP Services page provides access to the methods of data analysis that, at their core, utilize the vast amount of information embedded within
the DIP database.

Available Services

EPR Index Expression Profile Reliability Index (EPR Index) evaluates the quality of a large-scale protein-protein interaction data sets by
comparing the expression profile of the interacting dataset with that of the high-quality subset of the DIP database.

PVM Score The Paralogous Verification (PVM) method judges an interaction probable if the putatively interacting pair has paralogs that also
interact

DPV Score The Domain Pair Verification (DPV) method judges an interaction probable if potential domain-domain interactions between the pair
are deemed probable

Expression Profile Reliability (EPR)
Homology methods -Paralogous Verification (PVM)
Domain Pair Verification (DPV)




DIP interaction statistics

IMEx
All
DIP Al
Number of proteins 23201
Number of organisms 372
Number of interactions 71276
Number of distinct experiments describing an interaction 69471 16640 ----
Number of data sources (articles) 4607 1602 ----
SELECTED ORGANISMS PROTEINS INTERACTIONS EXPERIMENTS Details
Saccharomyces cerevisiae
(baker's yeast) 5051 23860 16444 ?
Drosophila ‘melanogaster 7544 22976 23260 N
(fruit fly)
Escherichia coli 2949 13688 16742 ?
Caenorhabditis elegans 2660 4049 4108 ?
Homo sapiens 2529 3376 4817 °
(Human)

Helicobacter pylori 714 1424 1443 ?
Mus musculus 1003 994 1284 ’
(house mouse)

Rattus norvegicus 349 304 425 >
(Norway rat)
Bos taurus 129 107 154 °
(cow)

Arabidopsis thaliana
e 120 129 168 ?



DIP for Yeast

1 13636
2 1270
3 402
4749 15658 4 165
5
6+

Yeast interactions by experiment type:
SS - small-scale experiments
HT - high-throughput experiments
SSHT overlap - purple

Bars mark interactions that were indentified in more than one experiment.




Assessing and filtering interaction data

DIP_CORE is a set of 3,003 interactions considered higher confidence.

DIP_CORE interactions either:

1. Have been observed in a small-scale experiment (2,246)
2. Have been observed in more than one experiment (1,179)
3. Have been confirmed by PVM (1,428)

2 DIp
' 40078E
DIP PIR DNMSS3 SwissProt "> W00 0 GenBank | | 0]
69N Name/Description cellular tumor antigen p53
DIP PIR SwissProt GenBank 0
24169N Name/Description pl9ARF twmor suppressor protein
Evidence Help
Type | Method Details Source
- l#milmmn —_ PMID:9653 180
l v [ sSMSCY1 ) i —

verification field indicates that one (1) small-scale experiment supports this interaction

Deane et al. Mol. & Cell. Proteomics (2002) 1.5, 349-356



BIND

* Designed to hold direct interaction, cluster and pathway
data 81,000 interactions written in ASN.1 (Abstract
Syntax Notation) for computational efficiency
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Bader GD, Betel D, Hogue CW. (2003) Nucleic Acids Res. 31(1):248-50



Arabidopsis Databases that store
interaction data

TAIR
ftp://ftp.arabidopsis.org/home/tair/Proteins/
Interactome?2.0/

http://bioinformatics.psb.ugent.be/
supplementary data/stbod/athPPl/site.php

AtPIN
http://bioinfo.esalg.usp.br/atpin/atpin.pl
AtPid http://atpid.biosino.org/




Protein Domains

* |n protein “language”, Domain A Domain B

domains could be — -

considered as “words”

* Analyzing network
graph of domains is an
effective method to
uncover protein
functions in genome
scale

PDB:1ACO




Domain-Domain interaction Database

e iPfam,
http://www.sanger.ac.uk/Software/Pfam/
iPfam/

e 3did (domain interactions)
http://gatealoy.pcb.ub.es/3did/

 DIMA
http://webclu.bio.wzw.tum.de/dima/
downloads.jsp
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Random Networks

e Uniformly random network:
— distributes the edges uniformly among nodes.

* Probabilistic interpretation:

— There exists a set (ensemble) of networks with

given number of nodes and edges. Select a
random member of this set.



Random Networks

L ]
L L
. 7[ \ T’ * fixed node number N
\l ' ® e« connecting pairs of nodes
with probability p

p=0 p=0.1 p=0.15

N(N-1)
2

Expected number of edges: E

P



P(K)

Node degrees in random graphs

Average degree:

(k)= p|V]
:I e Degree distribution:
‘.-‘.' <K> .\..
* Pk)~ ()p a-p)~ "

Most of the nodes have approximately the same degree.
The probability of very highly connected nodes is
exponentially small.



A scale free network

 Power-law degree distributions were found in
diverse networks
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A scale free network

 Power-law degree distributions were found in
diverse networks

log(P(k)) ~ -y log(k)

P(k)= ck™

Power-law degree distributions
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Scale Free
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Hub proteins=Essential proteins
* An essential gene is one that, when knocked out,
renders the cell unviable.

* Hub proteins are significantly enriched for essential
proteins. (Jeong et al. 2001, Nature 411,41)
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Average Degree

Essential proteins

Percentage of Hubs
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Essentiality

Hubs have high degrees

Essential genes have high
essentiality.

Yu (2004) Trends in Genetics, 20(6), 227



Hub proteins close to each other

* Hub proteins have lower average length of
shortest path among themselves than non-hub
proteins. (Moslov et al. 2002 Science 296, 910 )
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Moslov et al. 2002 Science 296, 910




Average shortest pathway length
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Clustering coefficient

Local clustering coefficient C; for a vertex v; is
given by the proportion of links between the
vertices within its neighborhood divided by

the number of links that could possibly exist
between them.

C=vovonn V




Static or Dynamic

e Combined PPl with gene expression profiles.

e Calculate co-express correlation between
hubs and their neighbors.

* Two types of hubs:

O ¢ o ?

o o o ® ® e
O X o °
Party Hub Date Hub

Han et al. (2004) Nature 430(6995):88-93



Gene Co-expression correlation
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Hub Co-expression correlation

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5
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Date or Party Hubs

Party Hubs are expressed with

e their connection partners at same
time. They will form a large protein
complex. They are more essential.
Most of them are house keeping
genes.

Date Hubs bind with their different
connection partners at different

. time. They have many different
binding sites. They have more
disorder regions.



Network topology of hubs
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Hub proteins

* Multiple and repeated domains are enriched in

hub proteins —SiH i1 18—

* Long disordered regions are common in hubs.

B-Subunit

disordered regions are typically
involved in regulation, signaling and
control pathways in which interactions
with multiple partners and high-
specificity/low-affinity interactions are

Autoinhibitory ) { \.2 ft iSi
" < ibitory J'§ orten requisite.
"' n “‘\ 'I'. l“‘ Peptide C q

(Image adapted from: Kissinger CR, et al. 1995, "Crystal structures of human calcineurin and
the human FKBP12-FK506-calcneurin complex.” Nature 378:641-4.)

(Ekman et al. 2006 Genome Biol. 7(6): R45)



Hub proteins

Fraction of proteins
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Centrality of PPI

Compared yeast, worm, and fly PPI

the number of degrees and the centrality of
proteins in the networks have similar
distributions.

Essential proteins have significant centrality.

Proteins that have a more central position in
all three networks, regardless of the number
of direct interactors, evolve more slowly and
are more likely to be essential for survival.

Hahn et al. (2004) Molecular Biology and Evolution, 22(4) 803.



Centrality

Measure of the centrality of a vertex within a
graph that determine the relative importance
of a vertex within the graph.

— Closeness centrality

— Betweenness centrality



Closeness centrality

* |tis defined as the average distance between
a vertex v and all other vertices reachable

from it.
 For a graph G: = (V,E) with n vertices, the
degree centrality C_(v) for vertex vis

A
[ [

dis(vi)

Be
C =-
C
n-1
A node is important if it has a small closeness centrality, C

because it is close to any other node.



Betweenness centrality

* Vertices that occur on many shortest paths
between other vertices have higher
betweenness than those that do not.

* For all node pairs (i, j), find the number of
shortest paths between them, o(i,j), and
determine how many of these pass through

node k -o,(i,)) C _E O’k(.l.,,.l.)
i,j G(l)J)

A node is important if it has a large Betweenness centrality,
because many shortest paths pass it.




Essentiality and Centrality

Betweeness
Centrality

1./ Closeness
Centrality

Degrees

Essential

Non-
Essential

Essential

Non-
Essential

Essential

Non-
Essential

Hahn et al. (2004) Molecular Biology and Evolution, 22(4) 803.
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0.221
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Essentiality, Centrality,
slow evolution rate

- Betweeness -0.174 -0.118 -0.071
D, - Closeness -0.085 -0.114 -0.064
D, - Degrees -0.161 -0.027 -0.053

 |dentified orthologs of the proteins in the yeast, worm, and fly networks in the
related species S. paradoxus, C. briggsae, and D. pseudoobscura, respectively.

* D, =the number of nonsynonymous differences per nonsynonymous site. (that
changes amino acid). This is proportional to the evolution rate.

 Essential genes are house-keeping genes, have slow evolution rate.

Hahn et al. (2004) Molecular Biology and Evolution, 22(4) 803.



Evolution Rates of party or date hubs

| DateHubs | _PartyHubs

Dn 0.7597 0.5652
Ds 2.3133 2.4254
Dn/Ds 0.3631 0.2627

* The lowering of evolutionary rate of the party hub proteins
than the date hub proteins.

* Party hubs form a big protein complex; they are more
essential.

Dn: non-synonymous distance (changes amino acid)
Ds: Pairwise synonymous (do not change amino acid)

Kahali Et al (2009) Gene, 429, 18



PPl Network topology

* Global protein interaction network is highly
interconnected and hence interdependent,
more like the continuous dense aggregations
of stratus clouds than the segregated
configuration of altocumulus clouds.

Batada et al. (2006) PloS Biology, 4(10), €137



Altocumulus or Stratus

altocumulus stratus

highly interconnected and
hence interdependent



Fault tolerance of PPl Networks

* Whether there exist alternative pathways that
can perform some required function if a gene
essential to the main mechanism is defective,
absent or suppressed.

* Redundant pathways is the BPM (between-
pathway model) motif

http://www.ncbi.nlm.nih.gov/pubmed/19399174

Brady et al. (2009) Plos One, 4(4) e5364



BMP motif

“synthetic-lethality”
interaction: both genes are
nonessential, but their
simultaneous deletion
destroys the viability of the
cell.



Redundant pathways

The BPM motif reduces

the number of N S ot
synthetic-lethal TN TN
interactions, and I s S >0

RS /’ R P
. ~\N’: \\\ ’/’
increase the fault- S
y sN”¢ N
V4 ’/ \\ N
tolerance for a cell.
/ 7 S
/,’, ;/”’ ——————————— 3‘
4 ¢” ————————

This is not a bipartite network
Brady et al. (2009) Plos One, 4(4) e5364



Redundant pathways

/ ZAP1)--.. MMSH
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This is not a bipartite network
Brady et al. (2009) Plos One, 4(4) e5364



Outline

Protein-Protein Interaction Model

How to get PPI
— Experimental methods
— Bioinformatic methods

PPl databases
Network properties
Analysis method and applications



