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Experimental methods

Co-immunoprecipitation is considered to be the gold standard
assay for protein—protein interactions, especially when it is
performed with endogenous (not overexpressed and not
tagged) proteins.

Pull-down assays are a common variation of
immunoprecipitation and are used identically, although this
approach is more amenable to an initial screen for interacting
proteins.

Chemical cross-linking is often used to "fix" protein
interactions in place before trying to isolate/identify interacting
proteins.

Yeast two-hybrid assay

Tandem Affinity purification

Protein microarray

Phage displav



Overlap of high-throughput
interaction studies is LOW

Ito Uetz Gavin Ho
Y2H Y2H TAP/ms FLAG/ms
Ito 2-hybrid 4363 186 54 63
Uetz 1403 54 56
2-hybrid

Gavin affinity 3222 198
Ho affinity 3596
Small scale 442 415 528 391

data from Salwinski & Eisenberg, Current
Opinion in Structural Biology (2003) 13,
377-382



Outline

Protein-Protein Interaction Model

How to get PPI

— Experiments: Y2H, MS, etc. (Assessing and filtering
high throughput interaction data)

— Bioinformatics

PPl databases and network properties
Analysis method

Integration with other omic data



High throughput interaction data

* Not reliable
* Noisy

 Computational methods for improving the
quality of interaction data

— Assessment and validation



Assessing and filtering Criteria

* Promiscuity criteria
* Overlap criteria
* Topology criteria



Assessing and filtering Criteria

* Promiscuity criteria

— In most high-throughput interaction studies, a few
proteins are observed to interact promiscuously.
Generally these are removed from the analysis.

— Problem: some interactions may be real!

* Examples:

— Using TAP/MS even without a bait, 17 proteins were found
in pull-downs by Gavin et al. 49 other proteins found to
have a similar frequency of interaction to these false
positives were thrown out.

— Using Yeast 2-hybrid, proteins were observed to make
many interactions in many screens usually discarded as
probably false positives.



Assessing and filtering Criteria

* Promiscuity criteria
* Overlap criteria
* Topology criteria



Assessing and filtering Criteria

* Overlap criteria

— An interaction has higher possibility to be real if
two different types of methods discover it.

e Methods:
— With interaction data.
— With non-interaction data.



Assessing and filtering Criteria

With interaction data:
intersection is low!

E.g. compare Y2H and TAP/MS. Unfortunately,
overlap is low.

Ito et al.
4081
(92)

Uetz et al.
1032
(179)

Fromont-Racine et al.
357
(25)

Newman et al.
152

(D




Assessing and filtering Criteria

* Overlap criteria

e Methods:

— With non-interaction data.
* Expression Profile Reliability (EPR)
* Homology methods -Paralogous Verification (PVM)
 Domain Pair Verification (DPV)

Deane et al. (2002) Mol. Cell. Proteomics



Expression Profile Reliability (EPR)

* Expression Profile Reliability Index (EPR Index)
evaluates the quality of a large-scale protein-
protein interaction data sets by comparing the

expression profile.

 Two proteins have high possibility to interact
with each other, if they co-express.
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Collect the mRNA expression levels of the
interaction pairs under several conditions, and
calculate their expression correlations.

Deane et al. (2002) Mol. Cell. Proteomics



Paralogous Verification Method (PVM)
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Count the number of paralogous interactions,
If the PVM score =2, they have a interaction.

Homologous sequences are paralogous if they were separated by a gene
duplication event: if a gene in an organism is duplicated to occupy two different
positions in the same genome, then the two copies are paralogous.



Paralogous Verification Method (PVM)

* PVM is very accurate; if a pair scores by PVM,
it is almost certainly a true interaction.

* PVM does not have good coverage; it is not
sensitive. PVM only confirms around 50%
high-confidence samples. This is because
many examples of paralogous complexes are

sparse.



Domain Pair Verification (DPV)

* |f two domains have an interaction, any two proteins that
have those two domains also have interactions.
* Protein 3D structures can provide the atomic detains for
protein interactions.
* The solved structures most are a single domain instead of a
full length protein. . .
Domain A Domain B

P1 P2



Assessing and filtering Criteria

* Promiscuity criteria
* Overlap criteria
* Topology criteria



A scale free network

 Power-law degree distributions were found in
diverse networks
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Probability

Count

Topology criteria
* Use information about the observed vs. expected
interaction network.
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Why do we need bioinformatics way
to generate PPl networks?

* Only model organisms have high throughput
PPI data. For example, yeast and human. How
about maize?

* High throughput method is expensive and
time consuming.



Bioinformatics methods

Homologous method to find Orthology

Combination with other information, such as
expression profile, GO annotations.

Prediction
— Sequence method
— Structural based method

Text mining



Orthologous proteins

* Homologous sequences are orthologous if they
were separated by a speciation event: when a
species diverges into two separate species, the
divergent copies of a single gene in the resulting
species are said to be orthologous.

* Orthologs, or orthologous genes (proteins), are
genes in different species that are similar to each
other because they originated from a common
ancestor.



Orthology search

* Similarity search will be done using

— BLASTP (Protein Basic Local Alignment Search
Tool; Camacho 2009)

— PSI-BLAST (Position-Specific lterated Blast;
Altschul et al. 1997).

— Profile Hidden Markov Models will be generated
from protein sequence databases and the search
is done using HMMER3 (Eddy 1998; http://
hmmer.org).



An Example

>At1g11720.1_ARATH

MAASGPKSSGPRGFGRRTTVGSAQKRTQKKNGEKDSNATSTATNEVSGISKLPAAKVDVQKQSSVVLNERNVLDRSDIEDGSDRLDKKTTDDDDLLEQKLKLERENLRRKEIETLA
AENLARGDRMFVYPVIVKPDEDIEVFLNRNLSTLNNEPDVLIMGAFNEWRWKSFTRRLEKTWIHEDWLSCLLHIPKEAYKMDFVFFNGQSVYDNNDSKDFCVEIKGGMDKVDFE
NFLLEEKLREQEKLAKEEAERERQKEEKRRIEAQKAAIEADRAQAKAETQKRRELLQPAIKKAVVSAENVWYIEPSDFKAEDTVKLYYNKRSGPLTNSKELWLHGGFNNWVDGLSIV
VKLVNAELKDVDPKSGNWWFAEVVVPGGALVIDWVFADGPPKGAFLYDNNGYQDFHALVPQKLPEELYWLEEENMIFRKLQEDRRLKEEVMRAKMEKTARLKAETKERTLKKF
LLSQKDVVYTEPLEIQAGNPVTVLYNPANTVLNGKPEVWFRGSFNRWTHRLGPLPPQKMEATDDESSHVKTTAKVPLDAYMMDFVFSEKEDGGIFDNKNGLDYHLPVVGGISK
EPPLHIVHIAVEMAPIAKVGGLGDVVTSLSRAVQELNHNVDIVFPKYDCIKHNFVKDLQFNRSYHWGGTEIKVWHGKVEGLSVYFLDPQNGLFQRGCVYGCADDAGRFGFFCHA
ALEFLLOQGGFHPDILHCHDWSSAPVSWLFKDHYTQYGLIKTRIVFTIHNLEFGANAIGKAMTFADKATTVSPTYAKEAGNSVISAHLYKFHGIINGIDPDIWDPYNDNFIPVPYTSEN
VVEGKRAAKEELONRLGLKSADFPVVGIITRLTHQKGIHLIKHAIWRTLERNGQVVLLGSAPDPRIQNDFVNLANQLHSSHGDRARLVLTYDEPLSHLIYAGADFILVPSIFEPCGLTQ
LIAMRYGAVPVVRKTGGLFDTVFDVDHDKERAQAQVLEPNGFSFDGADAPGVDYALNRAISAWYDGREWFNSLCKTVMEQDWSWNRPALEYLELY HSARK*

>GRMZM2G008263_P01_ZEAMA

MAATMGSISANGSYQTNRPSALKQAPHMQFQQCCNGGLRFLSKHSQSTRSKIQVAKRRATDNGIHPKTTGHRAPIVCSAGMTIVFVATEVHPWCKTGGLGDVVGGLPPALAA
MGHRVMTIAPRYDQYKDAWDTSVLVEVNIGDTVETVRFFHCYKRGVDRVFVDHPMFLEKVWGKTGAKLYGPTTGTDYRDNQLRFCLLCLAALEAPRVLNFNNSEYFSGPYGED
VVFVANDWHTAILPCYLKSMYKPNGIYKNAKVAFCIHNIAYQGRFARADFDLLNLPDSFLPSFDFIDGHVKPVLGRKLNWMKAGIIESDLVLTVSPHYVKELTSGPDKGVELDGVLR
TKPLEIGIVNGMDVYEWDPSTDKYISVKYDATTVTEARALNKESLQAEVGLPVDSSIPVIVFVGRLEEQKGSDILIAAIPEFVGENVQIIVLGTGKKKMEEELTQLEVKYPNNARGIAK
FNVPLAHMMFAGADFIIVPSRFEPCGLIQLQGMRYGVIPICSSTGGLVDTVEEGVTGFHMGSFNVECETVDPADVTAVASTVTRALKQYDTPAFHEMVQONCMAKDLSWKGPAK
KWEEVLLGLGVEGSRAGIDDAEEIAP LAKENVATP

Mouse-over 10 SnOwW aetine and scores, CICK 10 sSnow angnments

Color key for alignment scores

<40 40-50 80-200 >=200
Query
| I | I |
1 200 400 600 300 1000

Score = 165 bits (417), Expect = 1x1044,
ldentities = 158/547 (29%), Positives = 237/547 (44%),

Gaps = 106/547 (19%)



Othology databases

* |InParanoid (Berglund et al. 2008;
http://inparanoid.sbc.su.se, 100 organisms:
1687023 sequences),

 OrthoMCL-DB ( Chen et al. 2006;
http://www.orthomcl.org/cgi-bin/
OrthoMclWeb.cgi, ortholog group predictions
for 55 species )

 KEGG Orthology group (
http://www.genome.jp/kegg/ko.html)




Othology databases

 OrthoMam (Ranwez et al. 2007;
http://www.orthomam.univ-montp?2.fr/

orthomam/html/index.php, 36 organisms:
12777 sequences, Mammalian)

e OrthologlID( Chiu et al. 2006;
http://nypg.bio.nyu.edu/orthologid/, plants,
5 species, 137641 sequences )

 GreenPhylDB(Conte et al. 2007;
http://greenphyl.cirad.fr, plants, 16 species, )




6 06 (')Fhologloﬁ'l'ree andiaiagnostlcs Viewer =

@ v @ i\ FQ @ @ http://nypg.bio.nyu.edu/orthologid /cgi-bin/query.cgi v © (G
« t}'t» >
% OrthologID
¢ Tree and Dlagnostics Viewer
Query a Cycas_CBO90377 tree stats C1: 0.77 RCI: 0.69 RI: 0.89 HI: 0.22]
* Click on a node to view diagnostics * Mouse-over a node to view query classification scores
* Click on a taxon name to view gene information ¥ = outgroup << I < I > ] >> |
Poptr1#724745 LYDRLMENEKNETITADNYFTGSKDNLK- ==~ KWIGHPRFELIR-~~HDYTEPLLYEVDQIYHLACPASPIFY-KYNPYTKTIKTNYIGTLIRILG
Poptr1#656070 LYDRLMENEKNEYIVADNYFTGSKDNLK-~~~~ KWIGHPRFELIR-~-~-HDYTEPLLYEVDQIYHLACPASPIFY-KYNPYKTIKTNYIGTLMILG
At5g59290 LYDKLMEREKNEY Y TADRY FTGSKENLK-~~~~ KWIGHPRFELIR---HDYTEPLLIEVDRIYHLACPASPIFY-KYNPTKTIKTNVIGTLRILG
A3g46430 LYDKLMENEKNEYIVADNYFTGSKDNLK= ==~ KWIGHPRFELIR-~~-HDVTEPLLIEVDQIYHLACPASPIFY-KYNPYKTIKTNYIGTLMILG
A2g28760 LYDKLMQNEKNEYIVADNYFTGSKDNLK- =~~~ KWIGHPRFELIR-~-HDYTEPLFVEVDQIYHLACPASPIFY-KYNPTKTIKTNYIGTLRILG
Poptr1#706197 LYDKLMENEKNEYIVADNYFTGSKDNLR ===~ KWIGQPRFELIR-~-HDVTEPLLYEVDQIYHLACPASPIFY-KYNPYKTIKTNVIGTLRILG
Poptr1#362080 LYDRLIA-RGDSYIVYDNFFTGRKENTH -~~~ HHFKNPRFELIR---HDYVEPLLLEYDQIYHLACPASPVHY-KHNPTKTIKTNYVGTLMILG
Poptr1#572692 LYDRLIA-RGDSYIVYDNFFTGRKENT = wwux HHFKNPRFELIR-~~HDVVEPLLLEVDQIYHLACPASPVHY-KHNPYKTIKTNVYGTLRILG
= A2g47650 LYDRLMA-RGDNYIVYDNFFTGRKENT -~~~ HHFNNPNFEMOR---HDYVEPILLEVDQIYHLACPASPTHY-KFNPTKTIKTNYVGTLRILG
A3g62830 LYDRLMA-RGDTYIVYDNFFTGRKENTVH~wmuw HHF SNPNFEMIR-~~HDYVEPILLEVDQIYHLACPASPTYHY-KFNPTKTIKTNYVGTLRILG
0505229990 LYDRLYE-RGDSYIVYDNLFTGRKENYV~-mmm HHFGNPNFEMOIR-~-~-HDYVEPILLEVDQIYHLACPASPVHY ~-KWH-~~~~KTNYVGTLRILG
— 0s07g47700 LYDRLLA-RGD STV YDNLFTGRKENYL -~~~ HHAGNPNFEMIR-~~HDYTEPILLEVDQIYHLACPASPVHY-KHNPTKTIKTNYVGTLRILG
— Poptr1#735401 LYDKLIS-RGDEVIVIDNFFTGRKENLY ~~ww HLFGNPRFELIR-~~-HDYVEPILLEVDQIYHLACPASPTYHY-KYNPTKTIKTNVHGTLMILG
m — ) $ 03 17230 LYDELLA-RGDSYIVYDNFFTGRKENTA-~~~~ RHLADPRFELIR--~HDYVEPILLE YKTRTGTLMILG
Chlre2#1636417 LCDYLYA-RGDHYICLDNFFTGSKENIA-~~~~ HLIGKPNFEVIR-~~-HDYVEPILLEVDQIFHCACPASPIHY-KYNPIKTAKT SFLGTIORILG
0s01g73790 LCEKLMA-ETAHYTYAYDVYCDKIRHLYDPAPPHLHGRI SFHRLNIKND SRLEGLTKMADLTINLAATCTPADY - NTRPLDTIY SNFIDALPYTK
A2g27860 LCEKLLT-ETPHKYLALDYYNDKIKHLLEPDTVEWSGRIQFHRINIKHD SRLEGLVKMADLIINLAATCTPADY~-NTRPLDTIY SRFIDALPYTK
Atlg08200 LCEKLMT-ETPHKYLALDVYNDKIKHLLEPDTYQUAGRIQFHRINIKHD SRLEGLTKMADLTINLAATCTPADY -NTRPLDTIY SNFIDALPYTK
Poptr1 #639062 LCEKILQ-ETPHKILALDVY SDKIKHLLEPD SLEWAGRIQF HRINIKHD SRLEGLIKMSDLTINLAAICTPADY ~NTRPLDTIY SNFIDALPYVK
= EPOPUU.‘MSM LCEKILQ-ETPHKILALDYY SDKIKHLLEPDSLEWAGRIQFHRINIKHD SRLEGLIKMSDLTINLAATICTPADY-NTRPLDTIY SRFIDALPYVK
Poptr1#594851 LCEKILN—E‘I’O!GCILALDVY!DKIIGH.LEPD SLPWABRIOPHRIKIICHDSRLEOLImSDLTIMCTPADY-!TRPLMIY SHPIDALPVAK
Cvcas_CB090377 SF)
Os11g37890
Popirl #662916
o
Poptr1#742031
A15g28840
0510228200
Chlre2# 163850
Os06g44260
Os06g44270 ILRKLVS—LGP‘I'M"R—--T!(AELDLT
Poptrl#561376 ITRKLQS-LGFTNLYLR--~SHSELDLT AEKPRFVILAAAKTGGTHANNT Y PADFIAINLQIQTNVID
Poptr1#91781 ITRKLQS-HSLTNLYLR-~~SHSELDLT-~~~~ ROSDYDSFFA-=—memmm e AEKPQYTILAAAKTGGIHANNTYPADFIAINLQIQTNVID
Atlgl78% ITRKLQD-QGFTRLYLR-~~THSELDLT ===~ SQSDVESFFA==== === TEKPTYVILAAAKYGGIHANNT Y PADFIGYNLQIQTNVIH
Atlg73250 IVRKLQE-QGFTNLYLK--~-THAELDLT ROADYESFFS. QEKPYYVILAAAKVGGIHANNTYPADFIGYNLQIQTNVIK

CAC43708 % VYRALKK-DGY RNLVHK~~~THKELDLT ===~ RQH=~EEFFD=mmmmmmm ! TEKPAYVILAAAKTGGIHANSTYPAEFIATNLQIQTNVID




An example: Rice PPI

* http://www.harvest-web.org/

ATH
0s.3420.1 AT3G12110.1
0s.52771.1 AT5G60390.3
0s.55715.1 AT1G16300.1
0s.5492.1 AT3G56070.2

7000 15000




Bioinformatics methods

Homologous method to find Orthology
Prediction

— Sequence method
— Structural based method

Text mining

Infer from other networks, such as expression
profile, GO annotations.



Predicting protein-protein
interactions

* Sequence methods

* How can you predict that an interaction might
occur between two proteins based purely on
sequence data?

Valencia & Paz o's, (2002) Current Opinion in
Structural Biology 12, 368-373
Skrabanek et al. (2008) Mol Biotechnol. 38(1):1-17.



Prediction PPl with sequences

Gene neighborhood
Gene fusions
Phylogenetic profiles
Co-evolution
Correlated Mutation



Prediction PPl with sequences

 Gene neighborhood

— for bacteria, the arrangement of genes in operons
means that interacting proteins are often encoded
in adjacent sites in the genome

e 3ENE Neighborhood




Prediction PPl with sequences

e Gene fusions

— genes encoding interacting proteins in one
organism are sometimes fused into a single gene
in another. Look for these occurrences.

Protein A Protein B

orgl —E—— a—

Protein AB

Org 2 .

... 38




Prediction PPl with sequences

* Phylogenetic profiles
— based on the joint presence/absence of a pair of
proteins in a large number of genomes.

Phylogenetic Profile

o =) Dol o = =) = U]
e ® (]
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Prediction PPl with sequences

e Co-evolution

— as assessed by similarity of phylogenetic trees.
“mirrortree” method compares the distance
matrices for generating trees;

<
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O
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Evolu.tlon distance ves ¥ Distances for B
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Prediction PPl with sequences

e Correlated mutations

— the idea is that interacting positions on different
proteins should co- evolve so as to maintain the
interface. Look for correlation between sequence
changes at one position and those at another position
in @ multiple sequence alignment.

Alignment 1 Alignment 2

S hhh

~ Correlated Mutations

Conserved in equivalont sublraes of both tamilies

Suel et al. (2002) Nature Strut. Bio.
Pazos & Valencia (2002) Proteins



Prediction PPl with sequences

* Problems: they need lots of sequences, and
the methods are very sensitive to the
alignment method we used.



Web tools for PPI prediction with

sequences

AlIFUSE (Enright et al. 2001, Gene fusions,
http://www.ebi.ac.uk/research/cgg/allfuse/)

STRING (Snel et al. 2000, Gene Co-Localization, gene-
fusion, phylogenetic profiles,
http://www.bork.embl-heidelberg.de/STRING/)

WIT (Overbeek et al. 2000, Orthology/phylogenetic
profiles/gene co-localization,
http://wit.mcs.anl.gov/WIT2/)

Predictome (Mellor et al. 2002, Gene Co-Localization,
gene-fusion, phylogenetic profiles,
http://predictome.bu.edu/)

COGs (Tatusov et al. 1997, Orthology/phylogenetic
profiles, http://www.ncbi.nlm.nih.gov/COG/)




Bioinformatics methods

Homologous method to find Orthologs

Prediction
— Sequence method
— Structural based method

Text mining

Infer from other networks, such as expression
profile, GO annotations.



Structure-based methods

* Docking Method
 Threading Methods
e Structural Modeling Methods



Structures of protein interactions

* |f two proteins have an interaction, they bind together
as a certain conformation.

* For two give structures, if we can predict their docking
conformation, we can predict their interaction.

PDB: 2B42




Docking methods

* Docking : how two known structures will
Interact

* Docking approaches require structures of both
Interacting components.



Docking Method
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Docking servers

Zdock: http://zdock.bu.edu/
Hex: http://hex.loria.fr/

RossetaDock:
nttp://rosettadock.graylab.jhu.edu/

GRAMM-X:
http://vakser.bioinformatics.ku.edu/
resources/gramm/grammx/

PATCH dock:
http://bioinfo3d.cs.tau.ac.il/PatchDock/




Limitations of Docking methods

* No good energy scoring function to evaluate
the docked structures.

 We don’t have enough structures or good
enough docking methods to make high-
throughput prediction of protein-protein
interactions practical at this point.

* Frequently, conformational changes accompany
protein interactions. Docking methods generally
require a structure of the bound conformation
to predict interactions correctly. Modeling
conformational flexibility is hard.



Structure-based methods

* Docking Method
 Threading Methods
e Structural Modeling Methods



Threading method

* For two proteins, we do not have structures
for them.

* There are many protein binding complex
structures in PDB.

 We may use the “threading method” to model
the binding structures for two given proteins.



Threading method

* Protein-1: ACDFHSDCTPQPFHVISGAD...........

Structure template



Prediction Interactions by Threading

method
e Protein-1: ACDFHSDCTPQPFHVISGAD...........

* Protein-2: SKENYWAQLIHVGKSREYAI...........

|

Complex Structure template



Threading methods

 Threading methods

— Phase I: collect a complex structure library

— Phase II: Thread each target sequence onto a
library of folds

— Phase IlI: Take pairs of fold assignments and
thread the targets onto complexes of these folds
(complexes of known structure) Evaluate an
interfacial score to determine how
complementary the fit is.

Lu et al., PROTEINS (2002) 49, 350-364,
Genome Research (2003) 13, 1146-1154



Method Description

1) Establish a library of dimeric templates ....




Method Description

2) Match query sequences to the structure of
individual chains by threading method

Query A

Query B




Method Description

3) Verify binding by an energy scoring function

Is the binding affinity large enough? (binding threshold)



Threading methods

— Used library of 768 complexes, predicted 7,321
interactions for yeast proteins.

— Hard to assess performance. One way is to look at
some property that you believe should correlate
with interactions, e.g. co-localization or function.

Lu et al., PROTEINS (2002) 49, 350-364,
Genome Research (2003) 13, 1146-1154



Structure-based methods

* Docking Method
 Threading Methods
e Structural Modeling Methods



Predict protein interaction by
Structural Modeling Methods

* For two proteins, we do not have structures
for them.

* Similar to threading method, we may predict
their structures.



Structure prediction methods

e Ab initio methods

— based on physical principles rather than on
previously solved structures

— Not accurate
— Time consuming
* Template-based methods

— Predicting structure for a given sequence using a
known structure template

— The number of structure topologies is limited
— Different sequences may encode similar structure



Structure prediction

Predicting structure for a given sequence using
a known structure

1) Homology modeling: (Seq. ID>50%)

* High sequence identity with a sequence having known
structures. (Any sequence level algorithm, such as BLAST,
is enough)

2) Fold recognition (Remote/Structural homolog):

(Seq. ID <50%)

e Recognizing structurally homologous sequence without
significant sequence identity with known structures



Template Fold recognition Query

Library Sequence

A

— PSI-BLAST » Seq. Profile
/1@— Seq. Profile {—| PSI-BLAST
—-lStruc. »| Seq. Profile

[ ACCESS [+ Solvent Access. Area [~ Solvent Access. Area [« SABLE [

o DSSP |——  2nd.Struc. [~ [~ 2nd. Struc. “— PSI-PRED
Dynamic Programming local alighment
Gaps |
> Optimized Seq. Alignment
2nd Struc. |
Dependent Ranking Normalized Z-score

Model Building MODELLER




Structure Modeling

Template Database

Query sequence

Ranking all alignments

|

Building the model




Method Description

1) Establish a library of dimeric templates ....

- 3) Verify binding by an energy scoring function

2) Match query sequences to the structure of
individual chains by modeling method

i Query A Query

Is the binding affinity large
enough? (binding threshold)



Structure Modeling Method

* ~“65% accuracy when assessing whether different
fibroblast growth factors bind to various
receptors (4 structures available, 252 possible
pairings evaluated).

* Alibrary with 699 homodimers and 229
heterodimers, yeast 5887 proteins, predicted
2556 interactions. (Zhang)

* Not practical to apply at the genome level due to
lack of homologous complexes with structures.



Bioinformatics methods

Homologous method to find Ortholog

Prediction
— Sequence method
— Structural based method

Text mining

Infer from other networks, such as expression
profile, GO annotations.



