Graph Theory

Lecture 1

Many complicate systems have an underlying network topology

- Computer networks
- Social networks
- Biological networks
 - Food webs (chains)
 - Gene networks
 - Protein interaction networks
 - Signal transduction networks

Computer networks

Food web (Nutrition flow in species)

GENOME

gene regulation

PROTEOME

protein-protein interactions

signal transduction

METABOLISM

Bio-chemical reactions

Why study networks?

- It is increasingly recognized that complex systems cannot be described in a reductionist view.
- Understanding the behavior of such systems starts with understanding the topology of the corresponding network.
- Topological information is fundamental in constructing realistic models for the function of the network.

Network related questions

- How do we determine or infer network topology? How do we build a network?
- How can we quantitatively describe large networks?
- How did networks get to be the way they are?
- What are the consequences of a specific network organization?

Graph Theory

- Some basic concepts of Graph theory
- Some examples of Special graphs
- Graph operations
- Graph paths and cycles
- Graph connectivity
- Tree and Bipartite graph
- Network motifs

Graph concepts

- Graphs are made up by vertices (nodes) and edges (links).
- An edge connects two vertices, or a vertex with itself.

$$G=(V,E)$$

V: a finite set of vertices.

E: edges of the graph

Graph concepts: some terms

 Order of graph G: the number of all vertices,

$$V_G = |V|$$

 Size of graph: the number of all edges,

$$e_G = |E|$$

 For an edge e=uv, the vertices u and v are the Ends of this edge; u and v are neighbors.

Graph concepts

- Edges between B and Cmultiple edges
- AA loop
- The shape of the graph does not matter; only the way the nodes are connected to each other.

Simple graph

• A simple graph does not have loops (self edges) and multiple identical edges.

Weighted graph

- A edge has a weight value.
- In some applications, the weights, e.g., correspond to travel costs or geographical distances.

Directed Graph (Digraph)

- Edges have directions, where the edges are drawn as arrows.
- The edges in the digraph are also called "arcs".
- A digraph can contain edges BC and CB of opposite directions.

Question: Is this a simple graph?

Opposite of a Digraph

All vertices are same, but the arrows reversed.

Weighted Digraph

 Edges have both weights and directions.

Representations of a graph

- Plane figures.
- List of edges.
- Adjacency matrix.

Representations: List of edges

A - B

A - D

B - C

B - D

C - D

Representations: adjacency matrix

	Α	В	С	D
А		1		1
В	1		1	1
С		1		1
D	1	1	1	

- (1) Symmetric matrix.
- (2) What does it mean if there is a number for a diagonal entry?

Representations: adjacency matrix for a weighted graph

	А	В	С	D
Α		14		23
В	14		17	20
С		17		25
D	23	20	25	

Representations: adjacency matrix for a digraph

	А	В	С	D
Α				A->D 1
В	B->A 1		B->C 1	
С		C->B 1		
D		D->B 1	D->C 1	

This matrix is not necessary to be symmetric.

Representations: adjacency matrix for a weighted digraph

	Α	В	С	D
Α				A->D 23
В	B->A 14		B->C 17	
С		C->B 17		
D			D->C 25	

Node degrees

- Neighborhood: all neighbors of a node.
- Degree: the number of edges connected to the nodes; the number of neighbors of a node (vertex).
- Maximum degree and minimum degree. In a graph, the largest degree and the smallest degree.

Degrees in the adjacency matrix

	Α	В	С	D
А		1		1
В	1		1	1
С		1		1
D	1	1	1	

Degrees: 2 3 2 3

Handshaking Lemma

handshaking lemma (Euler, 1736): every finite undirected graph has an even number of vertices with odd degree.

eg. B and D

What is the sum of degrees of all vertices in a graph?

Answer: 2|E|

Degrees for Digraphs

 $K_{\rm C} = 3$

- In digraphs, we can define an in-degree and outdegree for a given node.
- The (total) degree is the sum of in- and outdegree.

Degrees for Digraph – source or sink

- Source: a node with indegree=0.
- Sink: a node with outdegree = 0.
- eg. D is a source.
- eg. A is a sink.

Subgraph

• If H is a subgraph of G, $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

Spanning Subgraph

• If H is a spanning subgraph of G, V(H)=V(G) and $E(H)\subseteq E(G)$.

Special graphs

- Trivial graph
- Complete graph
- Connected and disconnected graph
- Trees
- Bipartite graph
- Regular graph
- Line graph

Trivial graph

Complete graph (clique)

What the total number of edges in a complete graph?

$$|E| = {n \choose 2} = \frac{n(n-1)}{2}$$

Connection Density

$$Q = \frac{\text{# of Connections}}{\text{Max.# of possible Connections}} = \frac{E}{V(V-1)/2}$$

Complete digraph

What is the largest number of arcs that a simple digraph with N nodes can have?

$$|E| = 2 \times {n \choose 2} = 2 \times \frac{n(n-1)}{2}$$

B

C

Connected and disconnected

Bipartite graph

Trees

Regular graph

- •A graph G is said to be regular, if every vertex of G has the same degree.
- •If the degree is *r*, then *G* is *r*-regular.

Is the complete graph a regular graph?

Regular graph: Petersen Graph

- Order = 10.
- Size = 15.
- 3-regular graph

Regular graph

Can you find a 3-regular graph whose order is 8?

Line graph

Line graph

Graph Theory

- Some basic concepts of Graph theory
- Some examples of Special graphs
- Graph operations
- Graph paths and cycles
- Graph connectivity
- Tree and Bipartite graph
- Network motifs

Graph Operations

- Complement
- Union
- Intersection
- Rooted product of graphs

Graph Operations: complement

Graph Operations: union

Graph Operations: intersection

Graph Operations: root production

Graph Theory

- Some basic concepts of Graph theory
- Some examples of Special graphs
- Graph operations
- Graph paths and cycles
- Graph connectivity
- Tree and Bipartite graph
- Network motifs

Subgraphs again, special

- Walks
- Paths
- Circuits
- Cycles

Walks

- Walk: a sequence of nodes in which each node is adjacent to the next one.
- In the digraph, a walk needs to follow the direction of edges.

Paths

 Path: a sequence of nodes in which each node is adjacent to the next one, and edges can be part of a path only once.

A-B-D-C A-B-D-B-C-D A path having k vertices, is denoted by P_k . The length of this path is k-1.

The longest Path

For a non-weighted complete graph with *n* nodes, what is the length for the longest path in this graph?

$$|\boldsymbol{E}| - 1 = {n \choose 2} - 1 = \frac{\boldsymbol{n}(\boldsymbol{n} - 1)}{2} - 1$$

Paths in Weighted graph

 The length of a path is the sum of all edge weights in the path.

Length of (A - B - C - D) = 14 + 17 + 25

Paths for digraph

- In a digraph, a path needs to follow the direction of edges.
- In a digraph framework, a symmetrical edge can be used once in one direction and once in the opposite direction.

Disjoint Paths

- Path P and Q are disjoint, if they do not share any vertex.
- Path P and Q are independent, if they at most share their ends.

A-E-D and B-C are disjointed

A-E-D and A-B-C-D are independent

Circuits

• Circuit: a walk that starts and ends at the same vertex.

$$C \rightarrow B \rightarrow C$$

Cycles

Cycle: a circuit that does not revisit any nodes.

A cycle having k vertices, is denoted by C_k . The length of this cycle is also k.

A tree does not have any cycle

Shortest path

Between two nodes, there are multiple paths. The path having the shortest length is called the shortest path.

$$A - B - C$$

 $A - E - D - C$

A - B - C : 14+7

A - D - C : 23 + 25

Looking for the Shortest path

Dijkstra's algorithm

Find the shortest paths start from node "v0".

Insert "v0" into the visited set.

Initialization

v1	∞	∞	∞	∞	∞
v2	∞	∞	∞	∞	∞
v3	∞	∞	∞	∞	∞
v4	∞	∞	∞	∞	∞
v5	∞	∞	∞	∞	∞

Go through all un-visited neighbors of "v0", and calculate distance between the current value saved in the distance matrix and the sum of edge-weight and the matrix value of the visiting node.

$$T(v1) = min(T(v1), T(v0)+e01) = min(\infty, 2) = 2$$

 $T(v2) = min(T(v2), T(v0)+e02) = (\infty, 3) = 3$

Step 1

v1	2	∞	∞	∞	∞
v2	3	∞	∞	∞	∞
v3	∞	∞	∞	∞	∞
v4	∞	∞	∞	∞	∞
v5	∞	∞	∞	∞	∞

Go through all un-visited neighbors of "v1", and calculate distance between the current value saved in the distance matrix and the sum of edge-weight and the matrix value of the visiting node.

T(v0)

$$T(v2) = min(T(v2), T(v1)+e12) = min(3, 2+2) = 3$$

$$T(v3) = min(T(v3), T(v1)+e13) = min(\infty, 2+1) = 3$$

$$T(v4) = min(T(v4), T(v1)+e14) = min(\infty, 2+3)=5$$

$$T(v5) = min(T(v5), T(v1)+e15) = min(\infty, 2+2)=4$$

Step 2

v1	2	_	_	_	_
v2	3	3	∞	∞	∞
v3	∞	3	∞	∞	∞
v4	∞	5	∞	∞	∞
v5	∞	4	∞	∞	∞

T(v0) T(v1) $T(v4) = min(T(v4), T(v2)+e24) = min(\infty, 3+1)=4$

	Step 3						
v1	2	_	_	_	_		
v2	3	3	_	_	_		
v3	∞	3	3	∞	∞		
v4	∞	5	4	∞	∞		
v5	∞	4	4	∞	∞		

Ston 2

T(v1) T(v4) = min(T(v4), T(v3)+e34) = min(4, 3+2) = 4T(v5) = min(T(v5), T(v3)+e35) = min(4, 3+1) = 4

			эсер т				
v1	2	_	_	_	_		
v2	3	3	_	_	_		
v3	∞	3	3	_	_		
v4	∞	5	4	4	∞		
v5	∞	4	4	4	∞		

Step 4

Step 5

v1	2	_	_	_	_
v2	3	3	_	_	_
v3	∞	3	3	_	_
v4	∞	5	4	4	_
v5	∞	4	4	4	4