Transcriptome Lecture 4

Outline

- Multiple Testing Procedures
- Data Visualization, Distance Measures
- Clustering
- Gene Annotation and Enrichment Analysis

Clustering: Basic principles

- Issues to be consider before performing a cluster analysis
 - ☐Which genes/arrays to be used?
 - ☐ Which distance (similarity) measures?
 - Correlation coefficient based distance or Minkowski metric
 - ☐Which method is used to join clusters/ observations?
 - Single-link, Complete-link, Average-link, Centroid-link
 - □Which clustering algorithm is applied?

Type of Clustering algorithm

Outline

- Multiple Testing Procedures
- Data Visualization, Distance Measures
- Clustering
- Gene Annotation and Enrichment Analysis

The problem

- After differential expression testing, we obtained a list of significantly differentially expressed probes, controlled for false discovery rate
- We want to understand the biological insight behind this list
 - 1. we need to map the gene annotation information to these probes or gene IDs
 - 2. we want to test/infer whether an annotation is significantly enriched in our list

Annotation mapping

- What annotation information can we map probes or gene IDs to?
 - Chromosome, genes, protein family, structure, sequence, variations...
 - Gene Ontology, KEGG Pathway,...
 - Published literatures...

Annotation mapping: example

Annotation mapping

http://www.affymetrix.com/

Annotation mapping

Probe ID	Unigene	SwissProt	RefSeq	Entrez	Gene Symbo	Gene Title
Zm.1.1.A1_at	Zm.80960	B6T8E4 // / Q41804	NP_00110 5349	542280	eps5	embryo specific protein5

Annotation mapping in R

 What (bioconductor) packages are available for us to the mapping?

Annotation mapping

- The Bioconductor project provides comprehensive annotation data packages, that contain many different ID mappings to interesting data
 - http://www.bioconductor.org/packages/2.6/data/ annotation/
 - E.g., "hgu95av2" provides the mapping between between Affy IDs and IDs like gene IDs, GO, KEGG pathway...
- These packages are updated and expanded regularly as new data become available.

Annotation package

```
Installation:
> source("http://bioconductor.org/biocLite.R")
>biocLite("hgu95av2.db")
>library("hgu95av2.db")
> hgu95av2()
This package has the following mappings:
hgu95av2ACCNUM has 12625 mapped keys (of 12625 keys)
hgu95av2GENENAME has 11725 mapped keys (of 12625 keys)
```

 "Mapping" is basically the role of a hash table in most programming languages. In R, we can use "environment" object.

 The annotation data packages provide R environment objects containing key (e.g., affy probe set ID)and value (e.g., GO ID) pairs for the mappings between two sets of probe identifiers.

- > library(hgu95av2)
- > get("41046_s_at", env = hgu95av2GENENAME)
 [1] "zinc finger protein 261"
- > get("41046_s_at", env = hgu95av2GO)"GO:0003677" "GO:0007275" "GO:0016021"

- Alternatively, instead of relying on the general R functions for environments, new user friendly functions have been written for accessing and working with specific identifiers.
 - E.g. getGO, getGOdesc, getSYMBOL, ...

> library(hgu95av2)

```
    > getSYMBOL("41046_s_at",data="hgu95av2")
    41046_s_at "ZNF261"
```

- > gg<- getGO("41046_s_at",data="hgu95av2")
- > getGOdesc(gg[[1]], "MF")\$"GO:0003677""DNA binding activity"

Annotation mapping: example

Metabolic Pathways

- PMN: Plant Metabolic Network (http://www.plantcyc.org/)
- MetaCyc (<u>http://metacyc.org/</u>)
- KEGG: Kyoto Encyclopedia of Genes and Genomes (http://www.genome.jp/kegg/kegg2.html)
- Reactome (http://www.reactome.org/)
- PANTHER PATHWAYS (http://www.pantherdb.org/pathway/)
- Pathways Commons (http://www.pathwaycommons.org/pc/home.do)

KEGG Pathway

- KEGG Pathways:
 - Manually curated pathway maps representing our knowledge on the molecular interaction and reaction networks, for a large selection of organisms
 - The KEGG pathways include a collection of pathways important in:
 - Metabolism
 - Genetic Information Processing
 - Environmental Information Processing
 - Cellular Processes
 - Human Disease

• ...

KEGG Pathway: An example

Annotation mapping: example

Gene Ontology (GO)

- Gene Ontology (GO) is a collection of controlled vocabularies describing the biology of a gene product in any organism
- http://www.geneontology.org/
- Very useful for interpreting biological insight of microarray data – and it is computable!

So what does that mean?

From a practical view, ontology is the representation of something we know about. "Ontologies" consist of a representation of things, that are detectable or directly observable, and the relationships between those things.

Gene Ontology (GO)

- Organized in 3 independent sets of ontologies in a tree structure
 - Molecular function (MF),
 - Biological process (BP),
 - Cellular compartment (CC)

The GO is Actually Three Ontologies

Molecular Function

GO term: Malate dehydrogenase.

GO id: GO:0030060

(S)-malate + $\underline{NAD(+)}$ = $\underline{oxaloacetate}$ + \underline{NADH} .

Biological Process

GO term: tricarboxylic acid

cycle

Synonym: Krebs cycle Synonym: citric acid cycle GO id: GO:0006099

Cellular Component GO term: mitochondrion

GO id: GO:0005739

Definition: A semiautonomous, self replicating organelle that occurs in varying numbers, shapes, and sizes in the cytoplasm of virtually all eukaryotic cells. It is notably the site of tissue respiration.

Cellular Component

where a gene product acts

Molecular Function

activities or "jobs" of a gene product

glucose-6-phosphate isomerase activity

Molecular Function

insulin binding insulin receptor activity

Molecular Function

- A gene product may have several functions
- Sets of functions make up a biological process.

Biological Process

a commonly recognized series of events

cell division

Gene Ontology: Tree Structure

- Controlled networked terms
 - Parent / child network organized as a tree
 - Terms get more detailed as you move down the network

GO terms

Gene_Ontology

Dellular process

Ocell communication +

Ocell differentiation [GO:0030154] (493 genes, 649 annotations)

Oadipocyte differentiation +

Oantipodal cell differentiation +

Ocardiac cell differentiation +

Ocardiac cell differentiation +

Gene Ontology: Rule

- In GO, a gene can be
 - present in any of the ontologies (MF / BP / CC)
 - a member of several GO terms
 - A gene must be a leaf in GO trees
- The rule is that if a gene is a member of a term, it is also a member of the term's parents (or ancestors).

Gene Ontology: Rule

 The rule is that if a gene is a member of a term, it is also a member if the terms parents

Evidence types

- ISS: Inferred from Sequence/structural Similarity
- **IDA**: Inferred from Direct Assay
- IPI: Inferred from Physical Interaction
- IMP: Inferred from Mutant Phenotype
- IGI: Inferred from Genetic Interaction
- IEP: Inferred from Expression Pattern
- TAS: Traceable Author Statement
- NAS: Non-traceable Author Statement
- IC: Inferred by Curator
- ND: No Data available

IEA: Inferred from electronic annotation

Gene Ontology: files

- Ontology file: GO terms and relationships in a variety of formats. The ontology file is unique for all species.
- Annotation files: associations between gene products and GO terms submitted by members and associates of the GO consortium. Different species have different annotation files.
 - ogene_association.tair
 - ogene_association.goa_human

GO tools

- GO resources are freely available to anyone to use without restriction
 - Includes the ontologies, gene associations and tools developed by GO
- Other groups have used GO to create tools for many purposes:

http://www.geneontology.org/GO.tools

http://neurolex.org/wiki/Category:Resource:Gene Ontology Tools

Gene Ontology: tools

Gene Ontology: tools

Grouping by Biological process

Apoptosis
Gene 1
Gene 53

Mitosis
Gene 2
Gene 5
Gene45
Gene 7
Gene 35

Glucose transport
Gene 7
Gene 3
Gene 6
...

Positive ctrl. of cell prolif.
Gene 7
Gene 3
Gene 12

Growth
Gene 5
Gene 2
Gene 6
...

Using GO in practice

statistical measure

how likely your differentially regulated genes fall

into that category by chance

The problem

- After differential expression testing, we obtained a list of significantly differentially expressed probesets, controlled for false discovery
- We want to understand the biological insight behind this list
 - 1. we need to map the gene annotation information to these probesets
 - 2. we need to test/infer whether an annotation is significantly enriched in our list

Annotation Testing (enrichment analysis)

- We want to ask:
 - Are there any GO terms overrepresented in the obtained gene list, compared with what would happen by chance?
 - Hypergeometric testing or Fisher's exact test
 - Kolmogorov-Smirnov test or Wilcoxon signed rank test

Hypergeometric distribution

 The hypergeometric distribution arises from sampling from a fixed population.

Hypergeometric test

- **TEST:** We want to calculate the probability for drawing 7 or more white balls out of 10 balls given the distribution of balls in the urn.
- The smaller the possibility is, the more significantly enriched.

Hypergeometric test

High possibility, Easy to get Not enriched with white balls

Background

Annotation Testing (Hypergeometric test)

- Example: we obtained a list of 80 significant genes from a microarray experiment of yeast.
- Yeast has 6000 genes, and 100 of them can be mapped to a GO term called "Cell cycle". For the 80 significant genes from micrroarray, 10 are mapped to this GO term.
 - Is this observation a significant event? Or, is the GO term "Cell cycle" significantly over-represented in our list of 80 genes derived from microarray?

Annotation Testing (enrichment analysis)

- We want to ask:
 - Are there any GO terms overrepresented in the obtained gene list, compared with what would happen by chance?
 - Hypergeometric testing or Fisher's exact test
 - Kolmogorov-Smirnov test or Wilcoxon signed rank test

Annotation Testing (K-S test)

- Yeast has 6000 genes, and 100 of them can be mapped to a GO term called "Cell cycle". For the 80 significant genes from micrroarray, 10 are mapped to this GO term.
 - Is this observation a significant event? Or, is the GO term "Cell cycle" significantly over-represented in our list of 80 genes derived from microarray?
 - K-S test will test the null hypothesis that x and y were drawn from the same continuous distribution
 - > ?ks.test
 - > ks.test (x, y)

10 genes in 100 genes mapped to "Cell Cycle"

70 genes in the rest 5900 genes not mapped to "Cell Cycle"

Annotation Testing (enrichment analysis)

- Bioconductor tools using Hypergeometric testing or Fisher's exact test for enrichment analysis:
 - Gostat
 - » http://www.bioconductor.org/packages/2.3/ bioc/html/GOstats.html
- Bioconductor tools using variant of K-S test for enrichment analysis:
 - PGSEA
 - » http://www.bioconductor.org/packages/2.4/ bioc/html/PGSEA.html

Summary

- After differential expression testing, we obtained a list of significantly differentially expressed probes, controlled for false discovery
- We want to understand the biological insight behind this list
 - 1st, we need to map the gene annotation information to these probes
 - 2nd, we want to test/infer whether an annotation is significantly enriched in our list
 - Hypergeometric test, K-S test...

DAVID: a function annotation tool

http://david.abcc.ncifcrf.gov/

Midterm

- Will be posted before this Saturday.
- Midterm Exam is due by 3/23, Sunday,
 11:59PM. Late submission is not accepted.
- Open book
- You can ask me, but cannot discuss with any other people.
- Including some topics, such as limma package, multiple test, enrichment test etc.