1.Find a research article for your presentation
and final exam

2.Prepare your presentation
3.No class for the week of Midterm exam
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The problem

» After differential expression testing (from RNA-

seq or Microarray assay), a list of P-value is
obtained, one for each gene.

* Most investigators want to

— |dentify the genes that are differentially expressed

— Estimate the proportion of errors in the list of
selected “differentially expressed genes”



A naive solution

* Since genes with small p-values are likely to be
differentially expressed, why don’ t we just use
the traditional (pre-specified) alpha = 0.05 to
decide?

dYes?

XINo? But why?




What does this mean to microarray
data?

 The result is that we obtain one p-value for each gene

T1 T2 T3 N1 N 2 N3 T-statistics P-value
G 1 Histogram of pvalues1 T1 P1
G2 . T2 p2
g alpha=0.05
T20000 P20000

G 20000
e 20,000 p-values... oo

* If we use alpha=0.05 to decide differentially expressed
genes, 5% of the 20,000 genes would then be selected by

chance
 That means 1000 genes would be false positives...



A naive solution

* Since genes with small p-values are likely to be
differentially expressed, why don’ t we just use
the traditional (pre-specified) a = 0.05 to
decide?

dYes?

ANo!  20,000x0.05 = 1000 false positives!

" |f the investigator is interested in selecting 100 genes for
downstream analysis, they could all be false positives by
chance!

J Other solutions?




The solutions

* To select differentially expressed genes, we
need to do multiple testing (multiplicity)
corrections

— Familywise Error Rate (FWER), such as Bonferroni
correction and Holm’s method: adjust the p-value
threshold from alpha to alpha/(number of genes)

— Control False Discovery Rate: algorithm proposed
by Benjamini & Hochberg

— Re-sampling techniques (i.e., Permutation P-values)



Familywise Error Rate (FWER)

 Traditionally statisticians have focused on
controlling FWER when conducting
multiple tests.

« FWER is defined as the probability of one
or more false positive results:

FWER=P(V>0).

« Controlling FWER amounts to choosing
the significance cutoff ¢ so that FWER is
less than or equal to some desired level a.



The Bonferroni Method

* The Bonferroni Method is the simplest way
to achieve control of the FWER at any
desired level a.

* Simply choose ¢ =a/ m.
* With this value of ¢ for each individual test,

the FWER will be no larger than a for any
family of m tests.



Bonferroni correction

T1 T2 T3 N1 N2 N3 T-statistics P-value
G1 vl y2 y3 va vy5 y6 T1
G2 vl y2 y3 va y5 y6 T2
G 20000

e using a =0.05 we reject the null hypothesis that the expression

of gene 1 (2) is not changed in tumor versus normal tissue.

* Inthe other words, gene 1 (2) is differentially expressed genes

between tumor and normal tissues.



Bonferroni correction

However, the probability that either the expression difference
observed for gene 1 (p=0.012) or the expression difference
observed for gene 2 (p=0.045) under null hypothesis is
0.012+0.045 =0.057 (>0.05!).

Using an overall p-value alpha = 0.05, we have no evidence to
reject the null hypothesis that the expression of either gene 1
or gene 2 has no change in tumor versus normal tissues.

— Here overall p-value is the probability of making at least 1
mistake in the two performed tests.

— Hence, the a=0.05 is not stringent enough for each test.



Bonferroni correction

* The Bonferroni rule

— To guarantee that the probability of making at least
1 mistake in the two performed tests is not larger
than alpha, we need to use for each test alpha/2 as
significance level

— To guarantee that he probability of making at least
1 mistake in the ten performed tests is not larger
than alpha, we need to use for each test alpha/10
as significance level



Bonferroni correction

* For microarray, we need to, successively until the last gene, calculated
the difference between group means, divided by the global standard
error; obtain T20000 and P20000

T1 T2 T3 N1 N2 N3 T-statistics P-value
G1 T1 0.012
G2 T2 0.045
G 20000 | | y1 y2 y3 \y4 y5 Y6 T2000 P20000
N Y
Y T Y N
K )
|

* Result: 20,000 p-values need to be combined to give an overall
conclusion of how many genes are differentially expressed.



Bonferroni correction

* Hence, under Bonferroni rule, we need to use a
significance level of alpha/20000 for each gene .
— Simply choose ¢ =a / m.
— a=0.05=>c=0a/20000 = 0.0000025

— In other words, under Bonferroni rule, we will select a gene as
differentially expressed if its P-value < 0.0000025. This will
guarantee the probability of making at least 1 mistake in the
20000 performed tests is not larger than 0.05.

* More specifically, out of the genes selected, there is only
very small chance (5%) that at least one of them is a false
positive

— Is this too tough (stringent, conservative)?

dYes (if few genes’ p-values are less than a/200000: Game
Over...)



Weak Control vs. Strong Control

* A method provides weak control of an error
rate for a family of m tests if the FWER control
at level a is guaranteed only when all null
hypotheses are true (i.e. when m=m, so the
global null hypothesis is true).

* A method provides strong control of an error
rate for a family of m tests if the FWER control
at level a is guaranteed for any configuration of
true and non-true null hypotheses (including the
global null hypothesis)



Bonferroni s method can achieve strong control

P(4)+P(B)+P(C)

Assuming the rectangle has probability 1, the three
circles, A, B, C, represents three events. The
probability P(4UBUC), i.e., the probability of A or
B or C, is smaller than P(4)+P(B)+P(C).



Holm’ s Method for Controlling FWER

at Level a
* Letpy), Py --- 5 P denote the m p-values
ordered from smallest to largest. (need to sort all
P-values first)
* Find the largest integer k so that
p;<a [ (m-i+1) for all i=1,...,k.
(when you see it first time)

» set ¢ = py, (reject the nulls corresponding to the
smallest k p-values).

 If no such k exists, set ¢ = 0 (declare nothing
significant).



An Example

« Suppose we conduct 5 tests and obtain the
following p-values for tests 1 through 5.

Test 1 2 3 4 5

p-value 0.042 0.001 0.031 0.014 0.007

« Which tests’ null hypotheses will you reject if
you wish to control the FWER at level 0.057

« Use both the Bonferroni method and the Holm
method to answer this question.



Solution

P-value 0.042 0.001 0.031 0.014 0.007

« The cutoff for significance is ¢ = 0.05/5=0.01 using the
Bonferroni method. Thus we would reject the null
hypothesis for tests 2 and 5 with the Bonferroni method.

T2: 0.001 = 0.05/(5-1+1)=0.01 These calculations indicate
T5: 0.007 < 0.05/(5-2+1)=0.0125 that Holm’ s method would
T4: 0.014 < 0.05/(5-3+1)=0.0167  reject null hypotheses for
T3: 0.031 > 0.05/(5-4+1)=0.025 tests 2, 5, and 4.

T1: 0.042 < 0.05/(5-5+1)=0.05




Adjusted p-value

« P-value: the probability to observe more or equally extreme
data under the null hypothesis.

 Alternatively, a p-value for an individual test can be defined
as the smallest significance level (tolerable type 1 error
rate) for which we can reject the null hypothesis. For
example, if p-value is 0.045, this null hypothesis will be
rejected if a=0.05 but note rejected if a=0.04. The smallest

a to reject this null hypothesis is 0.45 (p-value).

* The adjusted p-value for one test in a family of tests is the
smallest significance level for which we can reject the null
hypothesis for that one test and all others with smaller p-
values.



Adjusted p-values

FWER: the adjusted p-value for one test in a family of tests
Is the smallest FWER (a) for which we can reject the null
hypothesis for that one test and all others with smaller p-

values.

Bonferroni: the null hypothesis will be rejected if unadjusted
p-value < a/m. So the smallest a that can lead to rejection
will be m x p-value, i.e., the adjusted p-value is the raw p-
value times m.

Holms: adjusted p-value for /i-th ordered p-value is

Py X(m—i+l)
The advantage of adjusted p-values: they can be compared
directly with a.



Example

Raw P-value 0.042 0.001 0.031 0.014 0.007
Bonferroni adjusted 0.21 0.005 0.155 0.07 0.035

Reject hypotheses 2 and 5 for Bonferroni’ s method

Holms . o
These calculations indicate

that Holm’ s method would
reject null hypotheses for
tests 2, 5, and 4.

0.001*(5-1+1)=0.005
0.007*(5-2+1)=0.028
0.014*(5-3+1)=0.042 <0.05

0.031*(5-4+1)=0.062
0.042*(5-5+1)=0.042



A Conceptual Description of
FWER

Suppose a scientist conducts 100 independent
microarray/RNA-seq experiments.

For each experiment, the scientist produces a list of
genes declared to be differentially expressed by testing a
null hypothesis for each gene.

Each list that contains one or more false positive results
IS considered to be in error.

The FWER is approximated by the proportion of 100 lists
that contain one or more false positives.



FWER Too Conservative for
Microarrays/RNA-seq?

Suppose that one of the 100 gene lists consists of 500
genes declared to be differentially expressed.

Suppose that one of those 500 genes is not truly
differentially expressed but that the other 499 are.

This list is considered to be in error and such lists are
allowed to make up only a small proportion of the total
number of lists if FWER is to be controlled.

However such a list seems quite useful from the
scientific viewpoint. Perhaps it is not so important to
control FWER for most high throughput experiments.



The solutions with R

> results=topTable(fit2, number=20,
adjust.method="xxx"

> results=topTags(fit2, number=20,
adjust.method="xxx"

adjust.method: “holm”, “hochberg”, “hommel”,
“bonferroni”, “BH”, “BY”, “fdr”, “none”



The solutions

* To select differentially expressed genes, we
need to do multiple testing (multiplicity)
corrections

— Familywise Error Rate (FWER), such as Bonferroni
correction and Holm’s method: adjust the p-value
threshold from alpha to alpha/(number of genes)

— Control False Discovery Rate: algorithm proposed
by Benjamini & Hochberg

— Re-sampling techniques (i.e., Permutation P-values)



FDR (False Discovery Rate)

The investigators, after spending thousands of
dollars, want to obtain a list of selected genes

As Bonferroni correction is very strict, only a
few genes might be selected

As an alternative solution, we can choose to
control the proportion of false positives out of
selected genes.

FDR is an alternative error rate that can be
useful for high throughput experiments.



False Discovery Rate (FDR)

 FDR was introduced by Benjamini and Hochberg
(1995) and is formally defined as

E(Q) where Q=V/R if R>0 and Q=0
otherwise.

* Controlling FDR amounts to choosing the
significance cutoff ¢ so that FDR is less than or
equal to some desired level a.

* More specifically, if we want to control at most 5%
false positives, which genes should be selected?



FDR (False Discovery Rate)

_______________ 1
|
|

i The results of |
| statistics test |

Negative Positive Total
T Truly unchanged | True Negative (U) False Positive (V MO
| The real status ! y 8 8 (V) - eIError( )
| of data ' P
T Truly differentially | False Negative (T)  True Positive (S) M-MO
expressed Type Il error
Total M-R R M

U: number of true negatives; S: number of true positives
T: number of false negatives; V: number of false positives
In our microarray example, M=20000 genes

R is known (i.e., how many genes are called positive by
statistics tests)



FDR (False Discovery Rate)

' The results of |
| statistics test |

_________________

Negative Positive Total
T Truly unchanged | True Negative (U) False Positive (V MO
| The real status ! y 8 8 (V) - eIError( )
| of data ' P
T Truly differentially | False Negative (T)  True Positive (S) M-MO
expressed Type Il error
Total M-R R M

 FDRis defined as the expected proportion of false positives
(type | errors) among all rejected null hypotheses

FDR = E(Q) with O=V/R it R>0
0O=0 if R=0



FDR (False discovery rate): How?

* The Benjamini & Hochberg procedure to
control FDR :

— For each gene (out of a total of n ), perform one
test

— Obtain n P-values: Py, p,, ..., Px
— Sort the obtained P-values: Py, Py, ...,Pm)

— To control the FDR atq , we will reject all genes
with p-.values P=<Dg where j is the largest index
for which :

qj

p < —
(/) -



FDR (False Discovery Rate):
An Example of 10 genes

e Aim: To control the FDR at level of 5%

—————————=

|
. P-values - .009 | .001 | .065 | .04 |.454 |.123 |.172 |.007 | .68 |.003

____________




FDR (False Discovery Rate):
An Example of 10 genes

 Aim: To control the FDR at 5% (¢ =0.05)

__________

IL_F_’_\@I_UEi' .009 (.001 |.066 |.04 |.465 |.12 |.182 |.007 |.069 | .003
. Sorted |

I

'Index j | 1 | 2| 3|4 ]|5]|6 | 7| 8] 9|10

.001 | .003 | .007 | .009 | .04 | .066 | .069 | .12 | .182 | .465

—— e ——— — —— — — _______|

__________________



FDR (False Discovery Rate):
An Example of 10 genes

 Aim: To control the FDR at 5% (¢ =0.05)

__________

[J?)ﬁﬂgg?: .009 |.001 |.066 | .04 |.465 (.12 |.182 |.007 | .069 | .003
. Sorted |
' Index j | 1| 23| a4|5 |6 | 7| 8] 9]10
.001|.003|.007|.009| .04 |.066|.069 | .12 | .182 | .465
Sorted P-values | compareL = 0.05% j/10
n

.005(.01 |.015(.02 |.025|.03 |.035|.04 |.045 .05




FDR (False Discovery Rate):
An Example of 10 genes

 Aim: To control the FDR at 5% (¢ =0.05)

[_E_Y@[lJ_??_' .009 |.001 |.066 | .04 |.465 (.12 |.182 |.007 | .069 | .003
. Sorted |
' Index j | 1| 23| a4|5 |6 | 7| 8] 9]10
.001|.003|.007|.009| .04 |.066|.069 | .12 | .182 | .465
Sorted P-values | compareL = 0.05% j/10
n

.005(.01 |.015(.02 |.025|.03 |.035|.04 |.045 .05
Py =L =0.05% /10
n

.001 | .003 | .007 | .009 | .04 | .066 | .069 | .12 |.182 | .465




How about Bonferroni correction?
The Same Example of 10 genes

 Aim: Use Bonferroni correction, alpha=0.05

—————————=

|
. P-values - .009 | .001 | .065 | .04 |.454 |.123 |.172 |.007 | .68 |.003

____________




How about Bonferroni correction?
The Same Example of 10 genes

 Aim: Use Bonferroni correction, alpha=0.05

T |

lL_E:\@!lf_e_S_l » .009 | .001 | .065 |.04 |.454 |.123 |.172 |.007 | .68 |.003
' Sorted |

A

' Index j 1 2 3 4 5 6 7 8 9 10

.001 | .003 | .007 | .009 | .04 | .066 | .069 | .12 | .182 | .465

compare alpha =0.05/10 =0.005

n




How about Bonferroni correction?
The Same Example of 10 genes

 Aim: Use Bonferroni correction, alpha=0.05

|
P-values <=2 .009 | .001 | .065 | .04 |.454 |.123 |.172 |.007 | .68 |.003

____________

_________

—_—_—— - - ——a

_________

.001 | .003 | .007 | .009 | .04 | .066 | .069 | .12 | .182 | .465

<P _ 605710 = 0.005

n

.001 | .003 | .007 | .009 | .04 | .066 | .069 | .12 |.182 | .465




Adjusted p-values (g-values)

If we use FDR as the significance threshold,
the adjusted p-value for one test in a family of
tests is the smallest FDR for which we can
reject the null hypothesis for that one test and
all others with smaller p-values.

In FDR setting, adjusted p-values are also
called g-values. g-value is derived in an
empirical Bayes setting, but it is equivalent to
adjusted p-value in practice.



The adjusted p-value or g-value for a given test fills
the blanks in the following sentences:

« “If | set my cutoff for significance ¢ equal to this p-
value, | must be willing to accept a false discovery rate
of ”

«  “To reject the null hypothesis for this test and all others

with smaller p-values, | must be willing to accept a false
discovery rate of ”

« “To include this gene on my list of differentially
expressed genes, | must be willing to accept a false
discovery rate of ”



Computation and Use of g-
values

Let g denote the g-value that corresponds to
the i smallest p-value p.

A

gy=min{p,my/K:k=i..m}

To produce a list of genes with estimated
FDR =< q, include all genes with g-values < a.



The solutions with R

> results=topTable(fit2, number=20,
adjust.method="fdr", Ifc=1)

> results=topTags(fit2, number=20,
adjust.method="fdr”)

adjust.method: "holm", "hochberg", "hommel",
"bonferroni", "BH", "BY ", "fdr", "none”

“fdr”



The solutions

* To select differentially expressed genes, we
need to do multiple testing (multiplicity)
corrections

— Familywise Error Rate (FWER), such as Bonferroni
correction and Holm’s method: adjust the p-value
threshold from alpha to alpha/(number of genes)

— Control False Discovery Rate: algorithm proposed
by Benjamini & Hochberg

— Re-sampling techniques (i.e., Permutation P-values)



A typical re-sampling procedure

For each gene g,
— Stepl: Perform test and obtain its absolute statistics:

[

A
e E.g., perform t-test and obtain t-statistics

— Step2: Repeat the following sub-steps n times:

 Randomly permute the sample labels (e.g., through
bootstrap)

* For each permutation, compute the new statistics,
[, )| wherei=1,..n

— Step3: The permutation p-value of gene g is the number of
times tg(l.) r> ‘tg‘ , divided by the number of permutation
(n).

— Step4: Select the gene whose permutation p-value is less
than the pre-specified significance level, alpha (e.g., 0.05) or
make further multiple testing corrections.



P-value again...

 The meaning of a p-value from a permutation
procedure differs from the meaning of a model-
based p-value.

— The model-based p-value is the probability of the
test statistic, assuming that the gene levels in both
the treatment and control groups follow the model
(e.g., a Normal distribution).

— A permutation-based p-value tells how rare that
test statistic is, among all the random partitions of
the actual samples into pseudo-treatment and
pseudo-control groups.



Concluding Remarks

* In many cases, it will be difficult to separate the many of
the differentially expressed genes from the non-
differentially expressed genes.

« Genes with a small expression change relative to their
variation will have a p-value distribution that is not far
from uniform if the number of experimental units per
treatment is low.

« To do a better job of separating the differentially
expressed genes from the non-differentially expressed
genes we need to use good experimental designs with
more replications per treatment.

47
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Data visualization: why do we care?

* A (good) picture is worth of thousands of words

— “The adage "A picture is worth a thousand words"
refers to the idea that a complex idea can be
conveyed with just a single still image. It also aptly
characterizes one of the main goals of visualization,
namely making it possible to absorb large amounts
of data quickly.”

— “Figures are often the most important part of a
scientific paper, so please take some time making
really good quality figures.” — Joe Wolfe, in "Writing
and publishing a scientific paper".



The Visualization

MA plot

Volcano plot

Heatmap

Dendrogram



MA plot

Pre-Norm Dilutions Dataset (array 20B v 10A)

oo © Median: -0.251
IQR: 0.245

>y <- (exprs(Dilution)[, c("20B", "10A")])

> ma.plot( rowMeans(log2(y)), log2(yl,
11)-log2(yl, 2]), cex=1)

> title(“Pre-Norm Dilutions Dataset
(array 20B v 10A)")

M

* Mis the log2 intensity ratio for a probe in the two chips ~ ———------
 Aisthe average log2 intensity for a probe in the two chips

 The MA plot gives a quick overview of the distribution of the data.
The general assumption is that most of the genes would not see any
change in their expression. Therefore the majority of the points on
the y axis (M) would be located at 0, since Log(1) is O.



MA plot

Limitation: Only informative with a small / intermediate
number of observations

i Can you tell where most i
' of these 409,600 points |
i are?? |
| |
|
|

dYes?
7 i dNo? |
T : T | Z
15 20 25 /
N ~
~

Data from two Affymetrix GeneChips with 409, 600 probes each



MA plot

e Solution - Hexagonal binning algorithom (Carr et al
1987) o

i Can you tell where most i
* hexbin package | of these 409,600 points
?7 |

. -  are?? J
_
2" o - COL:;E? >library("hexbin")
1 & 17167 >library("geneplotter")
vy 14498 >library("RColorBrewer")
=0 >hb <- hexbin(x,xbins=50)
4 5528 >plot(hb,colramp =
§é§§ >colorRampPalette(brewer.pal
o 5 + (9, "YIGnBu")[-1]))
1|5 2[[] 2|5
A

Data from two Affymetrix GeneChips with 409, 600 probes each



The Visualization

MA plot

Volcano plot

Heatmap

Dendrogram



Volcano plot

* |n statistics, a volcano plot is a type of scatter-
plot that is used to quickly identify changes in
large datasets composed of replicate data.

* |t plots significance versus fold-change on the y-
and x-axes, respectively.



Volcano plot

o 90

-Log p-values

\ Log fold change

* Avolcano plot s constructed by plotting the negative log of the
p-value on the y-axis (usually base 10). This results in data
points with low p-values (highly significant) appearing towards
the top of the plot.



-Log p-values

20

15

10

Volcano plot

o Lo

og fold change

I
— —

* The x-axis is the log of the fold change between the two
conditions. The log of the fold-change is used so that changes in
both directions (up and down) appear equidistant from the

center.




Volcano plot: why?

* P-values (on the y-axis) measure expression change in
terms of probability

— |t has statistical meaning (significance)

* Fold-changes (on the x-axis) measure expression
change in terms of magnitude

— |t has biological meaning (e.g., P53 is 3-fold up in tumor
versus normal)

A combination of these two gives us best information
to select differentially expressed genes



Volcano plot
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Log fold change

If we combine fold-changes and P-values to select the
differentially expressed genes, the list of genes are both
“biologically interesting” and “statistically significant”



Volcano plot: R

> results=topTable(fit2, number=20, adjust.method="fdr",
Ifc=1)

> results=topTable(fit2, number=20000,
adjust.method="fdr", Ifc=0)

> |fc=results[,2]

12

10

> |[pvalue=-log2(results[,5])

8

> plot(lfc,Ipvalue) -1




The Visualization

MA plot

Volcano plot

Heatmap

Dendrogram



Heatmap

* A heat map is a graphical representation of
data where the values taken by a variable in a
two-dimensional map are represented as colors

* |[n Microarray, it plots the level of expression of

many genes (in y-axis) across a number of
samples (in x-axis)

— The data is in the form of matrix



Heatmap

10

10

10



Heatmap: Example

e ALL data (Lymphoblastic leukemia study):
e 12625 probes (genes)

> exprs (ALLhm)
ALL1/AF4 04006 E2A/PBX1 08018 ALL1/AF4 15004 ALL1/AF4 16004 ALL1/AF4 19005 AL)

1007 s at 6.816397 7.151422 6.822427 6.709222 6.796443
1044 s at §,570669 7.019295 4,892009 4.,889920 4.339371
1065 at 8.475419 6.880097 9.939768 9.140339 9.579710
1081 at 8.631929 10.443100 8.487560 7.823037 9.879712
1134 at 7.654585 9.238699 7.559106 7.837794 7.864575
1140 at 8.039748 5.798014 6.791144 6.733774 7.276141




Heatmap: Example

e ALL data (Lymphoblastic leukemia study):

* source("http://www.bioconductor.org/
biocLite.R")

e biocLite("ALL")

> library("ALL”)

> data(ALL)

> p=exprs(ALL)[1:45,1:81]
> heatmap(p)



Heatmap: Example

Y-axis:
probesets

Red = Higher expression
= Lower Expression



Heatmap.2()

#Name: heatmap.2
#Enhanced Heat Map 3

> |ibrary(gplots)
> heatmap.2(yourdata)
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. Example

Heatmap

81 probesets chosen |
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Brown = Higher expression

Blue

Lower Expression



The Visualization

MA plot

Volcano plot

Heatmap

Dendrogram



