Next-generation sequencing
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Applications of RNA-seq

Study of mRNA gene expression profile and
discovery of differentially expressed genes.

Study of microRNA profiling.

Discovery of new transcripts, such as long non-
coding RNA and circular RNA.



Short Read Alighment

short reads have to be aligned (mapped) to a
reference sequence.

To genomes
To transcriptomes



Short Read Applications

* To genomes (DNA-seq)
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Alignment

GCACTTCACAAATTAATGACCATGAGCTCGTTTTTGATAAACTCCAACTACATCGAGCCC

CEErrrrrrrrr e
ACCATGAGCTCGATTTTGATAAA

GOAL: to efficiently find the true location of each read from a
potentially large quantity of reference data while distinguishing
between technical sequencing errors and true genetic variation
within the sample.

1. Efficient

True location

3. Distinguishing between technical sequencing errors and true
genetic variation

N



traditional methods would not work well

 BLAST: a sequence similarity search algorithm
(fast for searching a single sequence)

— Not specifically designed for mapping millions
of query sequences

— Take very long time

» Can take 2 days to map half million
sequences to 70MB reference genome

* Very memory expensive (indexing the
whole genome)



Performance Requirements

« Aligning tens of millions of sequences requires:
— Ultra fast search algorithms (100-1000x faster than BLAST)

— Small memory usage with economic data structures and
containers for programming

« Alignment requirements

— The requirements for short-read mapping applications are very
different from traditional sequence database search approaches
for ortholog identification.

— Most short-read alignment algorithms will not work for longer
sequences! However, most of them are more sensitive for short-
reads than BLAST, because they lack its word size limitation.

— Only best hits with almost perfect alignments are required. Lower
scoring alternative hits (more mismatches) are less interesting.

— Often only perfect matching required, but with the possibility to
allow 1-2 mismatches and only sometimes very short gaps.



Alignment

“Mapping the vast quantities of short
sequence fragments produced by next-
generation sequencing platforms is a
challenge. What programs are available and
how do they work?” (Trapnell et al. Nature
Biotechnology, 2009.)



Mapping Algorithms

Hash Table (Lookup table)
— FAST, but requires perfect matches. [O(m, n + N)]

Array Scanning

— Can handle mismatches, but not gaps. [O(m, N)]
Dynamic Programming (Smith-Waterman)

— Indels

— Mathematically optimal solution

— Slow (most programs use Hash Mapping as a prefilter)

[O(mnN)]

Merge Sorting

- i.e. Slider [Malhis et al 2009]

Indexing method, i.e. Burrows-Wheeler Transform (BW
Transform)

— FAST. [O(m + N)] (without mismatch/gap)

— Memory efficient.

— But for gaps/mismatches, it lacks sensitivity



Dynamic programming

e A dynamic programming can be used to find
the local alignments between a text T and a
pattern P in O(|T|,|P]|) time, but need
memory about O(|T|x|P])

* |tis used for two sequence comparison
developed by Smith and Waterman

* The genome is too big for this approach



Indexing

* Lengths of genome sequences and numbers of

reads are too

* Indexing is reo
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Short-Read Alignment Tools with indexing

* Indexing Reads with Hash Tables
— ZOOM: uses spaced seeds algorithm [Lin et al 2008]

— RMAP: simpler spaced seeds algorithm [Smith et al
2008]

— SHRIMP: employs a combination of spaced seeds and
the Smith-Waterman

— MAQ [Li et al 2008Db]
— Eland (commercial Solexa Pipeline)
* Indexing Reference with Hash Tables
— SOAPvV1 [Li et al 2008]
* Indexing Reference with Sux Array/Burrows-Wheeler
— Bowtie [Langmead et al 2009]
— BWA
— SOAPV2



MAQ
* Algorithm [Li et al 2008b]

— Uses a hashing technique that guarantees to found
alignments with up to two mismatches in the first 28 bp of
the reads.

— It indexes the read sequences in six hash tables and scans
the reference genome sequence for seed hits that are
subsequently extended and scored.

— The commercial Eland alignment program uses a very
similar approach.

 Performance
— Slower than Bowtie and SOAP.
* Features

— Versatile pipeline for SNP detection.

— Can report all hits for queries with multiple ones.

— Performs on single reads only ungapped alignments. Gaps
only possible for paired end reads by applying Smith-
Waterman algorithm on small candidate set.



Reference genome Short read
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Burrows-Wheeler Transform (BWT)

= BWT is the sequence of the last characters of
sorted list of rotations of the string (notice that
they are sorted in the same order as the

prefixes).



Burrows-Wheeler Transform (BWT)

Sacaacg
gsacaac
cg$acaa
acaacgsSmy acgbaca
aacgsac
caacgsSa
acaacgs

rotation

Sacaac
aacgsSa
acaacg
acgsac
caacgs
cgsaca
gSacaa

sorting

BWT
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Burrows-Wheeler Matrix
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Key observation

1
‘3
“last first (LF) mapping” 1

The i-th occurrence of character X in the
last column corresponds to

the same text character as the i-th
occurrence of X in the first column.
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Main advantage of BWT against suffix
array

= BWT very compact:
— Approximately 1/4 byte per base (2 bits)
— As large as the original text, plus a few “extras’

— Can fit onto a standard computer with 2GB of
memory

— BWT needs less memory than suffix array
* For example, human genome, m =3 x 10°:
— Suffix array: mlog,(m) bits = 4m bytes = 12GB
— BWT: m/4 bytes plus extras =1 -2 GB
* Linear-time search algorithm
— proportional to length of query for exact matches



Comparison

Indexing Reads with Hash Burrows-Wheeler

Tables * Requires <2Gb of
* Requires ~50Gb of memory.
memory.

e Runs 30-fold faster.

* |s much more
complicated to
program.

e Runs 30-fold slower.

* |s much simpler to
program.

MAQ. Bowtie, BWA etc.



Short-read mapping software

Software Technique Developer License
SOAP Hashing refs BGI Academic
Maq Hashing reads Sanger (Li, Heng) GNUPL
Bowtie BWT Salzberg/UMD GNUPL
BWA BWT Sanger (Li, Heng) GNUPL
SOAP2 BWT & hashing BGI Academic

http://www.oxfordjournals.org/our_journals/bioinformatics/nextgenerationsequencing.html



Passion
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Mapper Data Seq.Plat. Input Output Avail. Version Cit. % Reference

BFAST DNA 1,S0,4, Hel (CO)FAST(A/Q) SAM TSV (O 0.7.0 94 37.11 Homer et al. (2009)
Bismark Bisulphite I FASTA/Q SAM (0N} 0.7.3 7 6.21 Krueger and Andrews (2011)
BLAT DNA N FASTA TSV BLAST (0N 34 2844 275.67 Kent (2002)

Bowtie DNA 1,So0.4,Sa.P (C)FAST(A/Q) SAM TSV (0N} 0.12.7 1168 363.42 Langmead et al. (2009)
Bowtie2 DNA 1,4,Ion FASTA/Q SAM TSV (0N 2.0betas 0.00 Langmead and Salzberg (2012)
BS Seeker Bisulphite | FASTA/Q SAM (O] 19 9.26 Chen et al. (2010)
BSMAP Bisulphite I FASTA/Q SAM TSV (O 2.43 31 11.06 Xi and Li (2009)

BWA DNA ,So.4,Sa,P FASTA/Q SAM (ON 0.6.2 738 224.20 Li and Durbin (2009)
BWA-SW DNA 1,S0,4,Sa,P FASTA/Q SAM (O 0.6.2 160 67.69 Li and Durbin (2010)
BWT-SW DNA N FASTA TSV (ON 20070916 45 10.42 Lam ez al. (2008)
CloudBurst DNA N FASTA TSV (O 1.1 146 46.97 Schatz (2009)

DynMap DNA N FASTA TSV (0N 0.0.20 0.00 Flouri et al. (2011)
ELAND DNA 1 FASTA TSV Com 2 7 1.09 Unpublished”

Exonerate DNA N FASTA TSV (O] 2.2 255 34.69 Slater and Birney (2005)
GEM DNA 1, So FASTA/Q SAM, counts Bin 1.x 4 1.35 Unpublished®
GenomeMapper DNA I FASTA/Q BED TSV (ON] 0.4.3 31 11.66 Schneeberger et al. (2009)
GMAP DNA 1,4,Sa,Hel,lon,P FASTA/Q SAM, GFF (O 2012-04-27 217 29.52 Wu and Watanabe (2005)
GNUMAP DNA 1 FASTA/Q Tllumina SAM TSV (O 3.0.2 15 5.73 Clement e al. (2010)
GSNAP DNA I,4,Sa,Hel,Ion,P FASTA/Q SAM (O 2012-04-27 72 31.61 Wu and Nacu (2010)
MapReads DNA So FASTA/Q TSV (0N 24.1 0.00 Unpublished®

MapSplice RNA I FASTA/Q SAM BED (0N 1.15.2 50 28.17 Wang et al. (2010)

MAQ DNA I,So (C)FAST(A/Q) TSV (0N 0.7.1 957 251.66 Li et al. (2008a)
MicroRazerS miRNA N FASTA SAM TSV (O] 0.1 7 2.75 Emde et al. (2010)
MOM DNA L4 FASTA TSV Bin 0.6 18 5.55 Eaves and Gao (2009)
MOSAIK DNA 1,S0.4,Sa,Hel.Ion,P (O)FAST(A/Q) BAM (O 2.1 4 1.18 Unpublished®

mrFAST miRNA 1 FASTA/Q SAM (O 2.1.0.4 158 58.34 Alkan et al. (2009)
mrsFAST miRNA 1,So FASTA/Q SAM (ON 2.3.0 32 18.03 Hach et al. (2010)
Mummer 3 DNA N FASTA TSV (O 3.23 683 81.58 Kurtz et al. (2004)
Novoalign DNA I,So.4,Ion,P (COFAST(A/Q) Illumina SAM TSV Bin V2.08.01 137 34.49 Unpublished®

PASS DNA ,So,4 (CO)FAST(A/Q) SAM GFF3 BLAST Bin 1.62 45 13.67 Campagna et al. (2009)
Passion RNA 1,4.Sa,P FASTA/Q BED (N} 1.2.0 0.00 Zhang et al. (2012)
PatMaN miRNA N FASTA TSV (O 1.2.2 38 9.36 Priifer et al. (2008)

PerM DNA 1,So (O)FAST(A/Q) SAM TSV (O 0.4.0 30 10.88 Chen et al. (2009)
ProbeMatch DNA 1,4,Sa FASTA ELAND (O 6 1.92 Kim et al. (2009)

Fonseca, Bioinformatics, 2012

(continued)



Performance: DNA

BFAST 21.4 561348

BLAT 93 3.8 950220
Bowtie 169 5 798566

BWA 97 7.6 928093
BSMAP 25 8.3 802430
SOAP2 32 5.3 798565
MOSAIK 22 15.6 267173

For DNA (100bp) reads, 1 Million reads, time is in minutes, memory
is in GB.



Performance: miRNA

Bowtie 983951
BWA 91 7.4 996470
GSNAP 19 7.6 966802
MicroRazerS 49 1.6 979464
mrFAST 48 0.8 982049
PASS 28 15.8 999989
PERM 57 13.4 982545

For miRNA (20bp) reads, 1 Million reads, time is in minutes,
memory is in GB.



Issues about Alighment

A reference genome is used when available.

Typically, a maximum number of mismatches (1 or 2)
are allowed when aligning reads.

There are many challenges, such as dealing with
ternative splicing and reads that match multiple
places in the genome.

Q)

Data in its rawest form is huge and requires
substantial computing power to manage.



Mismatch

-

An observed short read may not exactly match any
position in the reference genome.

Such mismatches may represent a bad read-out.

The user can specify the maximum number of
mismatches, or a phred-style quality score threshold.

As the number of allowed mismatches goes up, the
number of mapped tags increases, but so does the
number of incorrectly mapped tags.



Multiple mapping

T

* Asingle short read may occur more than one
time in the reference genome.

 The user may choose to ignore tags that appear
many times.

* Asthe number of aligned positions gets large,
you get more data, but also more noise in the
data.



Genome Alignment

One can specify how many mismatches are to be tolerated.
This can also be quantified by accounting for quality scores.
A typical criterion might be 1-2 mismatches for 36bp reads.

From the raw sequences, ~50-80% of the reads are typically
aligned to the genome

— sequencing errors
— multiple matches in the genome

— deviations from the reference genome (SNPs, insertions,
etc)

— problems with the aligner
This % of mapped reads is a good measure of data quality.



Output: SAM format

A SAM file consists of two parts:
* Header

* contains meta data (source of the reads,
reference genome, aligner, etc.)

* All header lines start with “@” .

* Header fields have standardized two-letter codes
for easy parsing of the information.

* Most current tools omit and/or ignore the header.
* Alignment section

* A tab-separated table with at least 11 columns

* Each line describes one alignment

http://samtools.sourceforge.net/SAM1.pdf



SAM: multiple alignments and paired-end
reads

Each line represents one alignments.

Multiple alternative alignments for the
same read take multiple lines. Only the
read ID allows to group them.

Paired-end alignments take two lines.

All these reads are not necessarily In
adjacent lines.



A SAM file

[...]

HWI-EAS225 309MTAAXX:5:1:689:1485 0 Xl 863564 25 36M * 0O O
GAAATATATACGTTTTTATCTATGTTACGTTATATA
CCCCCCCCCcCCcCccrereeeeceec4aceeB4CA?’AAA< NM:i:0  XO:i:1
MD:Z:36

HWI-EAS225 309MTAAXX:5:1:689:1485 16 Xlll 863766 25 36M * O O
CTACAATTTTGCACATCAAAAAAGACCTCCAACTAC
=8A=AA784A9AA5AAAAAAAAAAA=AAAAAAAAAA NM:i:0 XO:i:1 MD:Z:
36

HWI-EAS225 309MTAAXX:5:1:394:1171 0 Xl 525532 25 36M* 0O O
GTTTACGGCGTTGCAAGAGGCCTACACGGGCTCATT

CCCCCCCCCCCCCCCCCCCCC?CCACCACAT?<???NM:i:0  XO0:i:1 MD:Z:
36

HWI-EAS225 309MTAAXX:5:1:394:1171 16 Xl 526689 25 36M* O O
GCTGTTATTTCTCCACAGTCTGGCAAAAAAAAGAAA TAAAAAA?AA<AA?
AAAAASAAA<AAAAAAAAAAAA  NM:i:0  XO:i1 MD:Z:36



SAM format: alignment section

The columns are:

v' QNAME: ID of the read (“query”)

v' FLAG: alignment flags

v RNAME: ID of the reference (typically: chromosome name)
v POS: Position in reference (1-based, left side)

v MAPQ: Mapping quality (as Phred score)

v CIGAR: Alighment description (gaps etc.) in CIGAR format
v MRNM: Mate reference sequence name [for paired end data]
v' MPOS: Mate position [for paired end data]

v" ISIZE: inferred insert size [for paired end data]

v' SEQ: sequence of the read

v' QUAL: quality string of the read

v’ extra fields



SAM alignment section

Chr1-239951 0 Chril 1211705 255 50M *0 O
ACCAATTCTCCTTGTGTTGTCACTGAAATTGTCTCCATGGAATTTTATTI
B@BC,CE;*BCEF@=EDA,C+AB?,F>,B53@((2(?33?;0992)5+55 XA:i:1
MD:Z:32T17 NM:i:1

Read Name

SAM flag (O=same orientation, 16=complimentary)

chromosome (if read is has no alignment, there will be a "*" here)

position (1-based index, "left end of read")

MAPQ (mapping quality)

CIGAR string (describes the position of insertions/deletions/matches in the alignment,
encodes splice junctions, for example)

Name of mate (mate pair information for paired-end sequencing)

Position of mate (mate pair information)

Template length (always zero)

10 Read Sequence

11. Read Quality (Phred scores)

12. extra fields Program specific Flags (i.e. HI:i:0, MD:Z:66G6, etc.)Li et al, Bioformatics, 2009

ok wnNE

© 00 N



SAM flag field

 FLAG field: a number, read as binary

bit hex | decimal
0 00 01 1| read is a paired-end read
1 00 02 2| read pair is properly matched
2 00 04 4 | read has not been mapped
3 00 08 8 | mate has not been mapped
4 00 10 16 | read has been mapped to “-” strand
5 00 20 32| mate has been mapped to “-” strand
6 00 40 64 | read is the first read in a pair
7 00 80 128 | read is the second read in a pair
8 01 00 256 | alignment is secondary
9 02 00 512 | read did had not passed quality check
10 04 00 1024 | read is a PCR or optical duplicate




SAM: CIGAR strings

Alignments contain gaps (e.g., in case of an indel, or, in
RNA-Seq, when a read straddles an intron).

Then, the CIGAR string gives details.
Example: “M10 14 M4 D3 M12” means

v the first 10 bases of the read map (“M10”) normally (not
necessarily perfectly)

v'then, 4 bases are inserted (“147), i.e., missing in the
reference

v'then, after another 4 mapped bases (“M47), 3 bases are
deleted (“D3"), i.e., skipped in the query.

v Finally, the last 12 bases match normally.
There are further codes (N, S, H, P), which are rarely used



SAM: optional fields

Extra fields:

» Always triples of the format TAG : VTYPE :
VALUE

* some important tag types:
* NH: number of reported alignments
 NM: number of mismatches
* MD: positions of mismatches



Bowtie specified part
NM:i:<N> Aligned read has an edit distance of <N>. (N mismatches)

CM:i:<N> Aligned read has an edit distance of <N> in colorspace. This field is present in
addition to the NM field in -C/--color mode, but is omitted otherwise.

MD:Z:<S>  For aligned reads, <S> is a string representation of the mismatched reference
bases in the alignment. See SAM format specification for details. For colorspace
alignments, <S> describes the decoded nucleotide alignment, not the colorspace
alignment.

XA:i:<N> Aligned read belongs to stratum <N>.

XM:i:<N> For a read with no reported alignments, <N> is 0 if the read had no alignments.
If -m was specified and the read's alignments were supressed because the -m ceiling was
exceeded, <N> equals the -m ceiling + 1, to indicate that there were at least that many
valid alignments (but all were suppressed). In -M mode, if the alignment was randomly
selected because the -M ceiling was exceeded, <N> equals the -M ceiling + 1, to indicate
that there were at least that many valid alignments (of which one was reported at
random).



A useful specific tag

* NH:i:<N> Number of reported alignments
that contains the query in the current record

* Bowtie does not have this output. How can we
find the uniquely aligned reads?

— Search whole sam file with a read ID. If this ID
occurs only once time, it is uniquely aligned.



Other SAM/BAM files

« Text SAM files (.sam): standard form

 BAM files (.bam): binary representation of
SAM

* more compact, faster to process, random
access and indexing possible

« BAM index files (.bai) allow random
access in a BAM file that is sorted by
position



SAMtools

* The SAMtools are a set of simple tools to
— convert between SAM and BAM
— sort and merge SAM files
— index SAM and FASTA files for fast access
— calculate tallies (“flagstat™)
— view alignments (“tview")
— produce a “pile-up”, i.e., a file showing
—local coverage
—mismatches and consensus calls
—indels
* http://samtools.sourceforge.net/



Visualization of SAM files.
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+ Integrative Genomics Viewer (IGV): Robinson et al., Broad Institute




Homework 4

Download data from course website
— Reference genome and 50 reads

Download Bowtie and install it
ndexing and alignment

-ind uniquely aligned reads

— If you make a program to this, you can get extra
credits.

— If using perl, you may use “hash” to determine the
uniquely aligned reads.



Bowtie

http://bowtie-bio.sourceforge.net/
index.shtml

bowtie-build is the indexer
bowtie is the aligner

Input is fastq

Output is sam format



