Next-generation sequencing

Assembly Algorithms

Main algorithm used:

* Greedy algorithms

* Overlap Layout Consensus
* De brujin graphs

Greedy Assembly

200
1 1

Build a rough map of ; N

fragment overlaps z ~ T
(pairwise alignment) : 4 T
Pick the largest scoring 200

1
., I TTT]

overlap

150

4
IL 5 TTT1T 1]

Merge the two fragments

150

200 0 4 T T

Repeat until no more Yy e e B
merges can be done

Greedy Assembly

* Advantages:

— Simple and easy to implement

— effective
* Disadvantages

— Since local information is considered at each step, the
assembler can be easily confused by complex repeats,
leading to mis-assemblies.

— Local approach. Easy to be trapped into a local

optimal solution (local minimum).

— Early mistakes create bad asseFEralines.

R1

S E—

R5

R4

R2

Overlap-layout-consensus

Try to find the Hamiltonian path:
A pathin the graph contains each node exactly once.

* Following the Hamiltonian path, combine the
overlapping sequences in the nodes into the
sequence of the genome

e Computationally expensive (NP-hard problem)

ATTCACGTAG

Overlap-layout-consensus

Better than Greedy algorithm. It can generate correct
order of contigs that the Greedy algorithms may have
errors.

No efficient algorithm to find the Hamiltonian path

Short fragment length = very small overlap therefore
many false overlaps.

Overlap discovery is sensitive to minimum overlap length
and minimum percent identity required for an overlap.

Overlap discovery is also time consuming.

Large number of reads + short overlap + higher error are
challenging for the overlap - layout - consensus approach

Can’t assemble repeat longer than read length
It is mostly used with Sanger or 454 data.

Assembly Algorithms

Main algorithm used:

* Greedy algorithms

* Overlap Layout Consensus
* De bruijn graphs

d

[TAGTCGAGGCTTTAGATCCGATGAGGCTTTAGAGACAG] i 1 Sequencing

(for example, Solexa or 454)

AGTCGAG CTTTAGA CGATGAG CTTTAGA
GTCGGG TTAGATC ATGAGGC GAGACAG
GAGGCTC ATCCGAT AGGCTTT GAGACAG
AGTCGAG TAGATCC ATGAGGC TAGAGAA
TAGTCGA CTTTAGA CCGATGA TTAGAGA
CGAGGCT AGATCCG TGAGGCT AGAGACA 1
TAGTCGA GCTTTAG TCCGATG GCTCTAG

TCGACGC GATCCGA GAGGCTT AGAGACA
TAGTCGA TTAGATC
GTCGAGG TCTAGAT

GATGAGG TTTAGAG
ATGAGGC TAGAGAC

AGGCTTT ATCCGAT AGGCTTT GAGACAG
AGTCGAG TTAGATT ATGAGGC AGAGACA 2
GGCTTTA TCCGATG TTTAGAG

2. Hashing

CGAGGCT TAGATCC TGAGGCT GAGACAG
AGTCGAG TTTAGATC ATGAGGC TTAGAGA

GAGGCTT GATCCGA GAGGCTT GAGACAG
Linear stretches
%
()
.

TGAG ATGA GATG CGAT CCGA TCCG ATCC GATC AGAT
0 @) G 8 T) 9 @) ®

AGAA
GCTC CTCT TCTA CTAG | _“')
@) () @ @2 g
TAGT AGTC GTCG TCGA CGAG GAGG AGGC GGCT GGCT
B9 (79 99 (109 (&) (163 (18§ (183 (11x) = *
GCTT CTTT TTTA TTAG
@) @) @) (129

TAGA AGAG GAGA AGAC GACA ACAG
(169 () (1) (99 @9 3

S ———

CGAC GACG ACGC

1 (19 (9
.- l

3. Simplification of linear

AGAA

4. Error (tip and bubble) removal‘ Bubble

AGATCCGATGAG

. -
TAGTCGAG GAGGCTTTAGA AGAGACAG

stretches 4.

De Bruijn Graphs

Get k-bp (k-mer) subsequences for
reads.
k-mers in the reads are collected
into nodes and the coverage at
each node is recorded. Link two k-
mer nodes if they have overlap.
the graph is simplified to combine
nodes that are associated with the
continuous linear stretches into
single, larger nodes of various k-
mer sizes.
error correction removes the tips
and bubbles that result from
sequencing errors and creates a
final graph structure that
accurately and completely
describes in the original genome
seguence.

Flicek, Nature Methods, 2009

Differences between an overlap graph and a de Bruijn graph for assembly.

A Read Layout B Overlap Graph

¢ GACCTACA
ACCTACAA
CCTACAAG
CTACAAGT
TACAAGTT
ACAAGTTA
CAAGTTAG
TACAAGTC
ACAAGTCC
CAAGTCCG

NKX QD> D DoD

Schatz M C et al. Genome Res. 2010;20:1165-1173

Copyright © 2010 by Cold Spring Harbor Laboratory Press

De Bruijn Graphs example

For the purposes of illustration, we can use human readable text
to explore how assemblies work.

This is an example taken from Leipzig et al 2001.
In it he uses the opening paragraph from Dickens
cities”.

It is an appropriate example because like genomes, it contains
strings that are repeat over and over.

)

A tale of two

“It was the best of times, it was the worst of times, it was the age of
wisdom, it was the age of foolishness, it was the epoch of belief, it was

the epoch of incredulity,.... “
Dickens, Charles. A Tale of Two Cities. 1859. London: Chapman Hall

Velvet example courtesy of J. Leipzig 2010

De Bruijn Graphs example

itwasthebestoftimesitwastheworstoftimesitwastheageofwisdomitwastheageoffoolishness...

Generate random ‘reads’ ‘ f How do we assemble?

fincreduli geoffoolis Itwasthebe Itwasthebe geofwisdom itwastheep epochofinc timesitwas stheepocho nessitwast wastheageo theepochof stheepocho hofincredu
estoftimes eoffoolish lishnessit hofbeliefi pochofincr itwasthewo twastheage toftimesit domitwasth ochofbelie eepochofbe eepochofbe astheworst chofincred theageofwi
iefitwasth ssitwasthe astheepoch efitwasthe wisdomitwa ageoffooli twasthewor ochofbelie sdomitwast sitwasthea eepochofbe ffoolishne eofwisdomi hebestofti
stheageoff twastheepo eworstofti stoftimesi theepochof esitwasthe heepochofi theepochof sdomitwast astheworst rstoftimes worstoftim stheepocho geoffoolis
ffoolishne timesitwas lishnessit stheageoff eworstofti orstoftime fwisdomitw wastheageo heageofwis incredulit ishnessitw twastheepo wasthewors astheepoch
heworstoft ofbeliefit wastheageo heepochofi pochofincr heageofwis stheageofw fincreduli astheageof wisdomitwa wastheageo astheepoch olishnessi astheepoch
itwastheep twastheage wisdomitwa fbeliefitw bestoftime epochofbel theepochof sthebestof lishnessit hofbeliefi Itwasthebe ishnessitw sitwasthew ageofwisdo
twastheage esitwasthe twastheage shnessitwa fincreduli fbeliefitw theepochof mesitwasth domitwasth ochofbelie heageofwis oftimesitw stheepocho bestoftime
twastheage foolishnes ftimesitwa thebestoft itwastheag theepochof itwasthewo ofbeliefit bestoftime mitwasthea imesitwast timesitwas orstoftime estoftimes
twasthebes stoftimesi sdomitwast wisdomitwa theworstof astheworst sitwasthew theageoffo eepochofbe theageofwi foolishnes incredulit ofbeliefit chofincred beliefitwa
beliefitwa wisdomitwa eageoffool eoffoolish itwastheag mesitwasth epochofinc ssitwasthe itwastheep astheageof stheageoff sitwasthee thebestoft oolishness
heepochofb ochofbelie wastheepoc bestoftime mesitwasth ebestoftim pochofincr

...etc. to 10’s of millions of reads

Traditional all-vs-all comparisons of datasets this size require immense
computational resources.

De Bruijn solution: Construct a graph efficiently

Step 1: “Kmerize” the data

Reads: ’:cbe:ageofwi
Kmers : the
(k=3) éa
:eag
age
geo
eof
ofw
fwi

sthebestof

sth
the
heb
ebe
bes
est
sto
tof

astheageof

ast
sth
the
hea
eag
age
geo

eof

De Bruijn Graphs

worstoftim

wor
ors
rst
sto
tof
oft
fti

tim

.....etc for all reads in the dataset

De Bruijn Graphs

Step?2 Build the graph

Look for k-1 overlaps: given by the reads

Vi the = hea —> eag — age — geo — eof
ast = sth the => hea —> eag —> age —> geo —> eof => ofw —> fwi
sth = the \

heb —> ebe = bes = est = sto — tof
/1 sto — tof

/

oft = fti — tim

N

WOor —> ors — rst

\ «— 1, € </

..... etc for all ‘kmers’ in the dataset

De Bruijn Graphs
step3: simplify the graph

» times

\| _—> be i e v wisdom “

\ _ sl :_,——b of
 Te—_ sl > foolishness -~
) S~ A N f \ . \
SO T age — g > belief —_ '\
1 —— epoch —— * incredulity)

* The final step is to remove redundancy, result in the final De Bruijn Graph
representation of our genome.

* the overlaps between reads are implicit in the graph, so all the millions v.s
millions of comparisons are not required.

 On the downside, information is lost as repetitive sequences are “collapsed”
into a single representation.

De Bruijn Graphs

step4: Create contigs

/ f
/ 2
J —> WOr —

Yy W > foolishness ~
“~—~\:l:\— —p age — //7/ .Ix be“ef 7—\‘_ \
\. ~— epoch —— * incredulity))

Find the Hamiltonian path or cycle in the De Bruijn
graph. Each path in the simplified De Bruijn graph is
a Hamiltonian path. A Hamiltonian path is a contig.

Common Problems

Spurs: dead-end sequences
Bubbles: divergent paths that then converge

Frayed rope: convergent then divergent paths

Cycles: paths convergent upon themselves

Spurs

Bubbles

Frayed
Rope

Cycles

GTGA | TGAG

ACGT || CGTG
GTGC |»| TGCA 2| GCAT [| CATT
GTGA |2{ TGAG || GAGT || AGTT 2| GTTA |

ACGT CGTG | TTAC
GTGC TGCAI GCAT | CATT [| ATTA |

GCGT [—>| CGTG TTAG

| GTGC 2| TGCA 2| GCAT |2 CATT 2| ATTA

TAGT |~ AGTG TTAC

GTCA |
AGTC | TCAG

Resolve graph complexity

(before) (after)

Strengths and problems

of De Bruijn approach

Strengths:
* No need to calculate the overlaps

* Size of the final graph is proportional to the genome size
» successfully for very short reads (<50bp)

Problems:

* The main drawback to the de Bruijn approach is the loss
of information caused by decomposing a read into a
path of k-mers.

* require an enormous amount of computer space

 Canonly resolve k long repeat

* Loose connectivity when create the contigs

Strengths and problems
of De Bruijn approach

Sequence 1 Sequence 2 d ‘
(i) AACGTAGT CGTAGTTG
(ii) AACGT || ACGTA | [CGTAG | |GTAGT CGTAG | |GTAGT || TAGTT | AGTIG
(iii) AACGT pACGTA MCGTAG MGTAGT p TAGTT MAGTTG

Schlebusch, 2012

A48 {E1 {01 seqence1 Pros:correctly links two sequences
CE L4 Ee 4 F 46 seqence2 Without having to compute overlap
score. (above case)
NmE | Cons: two sequences are linked
L without any real overlap. (left case)

De Bruijn Assemblers
Euler: http://nbcr.sdsc.edu/euler/ , Sanger, 454, 2001-2006

Velvet: http://www.ebi.ac.uk/~zerbino/velvet/, small genomes,
Sanger, 454, Solexa, SOLiID, 2007-2009 (very good for small genome)

ABYSS: http://www.bcgsc.ca/platform/bioinfo/software/abyss, large
genome, Solexa, SOLiD, 2008-2011 (for very large genome)

SOAP-denovo: http://soap.genomics.org.cn/soapdenovo.html,
Solexa, 2009

ALLPATH-LG:
http://www.broadinstitute.org/software/allpaths-lg/blog/, large
genome, Solexa, SOLiD, 2011 (very good performance bu require 2
lib of different insert sizes)

IDBA-UD: http://i.cs.hku.hk/~alse/hkubrg/projects/idba ud/, Sanger,
454,Solexa, 2010 (metagenomic, doesn’t rely on coverage to remove
error)

Comparison of Assembly tools

Algorithm Feature

Greedy Assemblers

OLC Assemblers DBG Assemblers

Approaches to graph construction

Implicit
Reads as graph nodes
K-mers as graph nodes

SSAKE, SHARCGS, VCAKE

CABOG, Newbler, Edena
Euler, Velvet, ABySS, SOAP

Simple paths as graph nodes AllPaths

Multiple values of K Euler

Multiple overlap stringencies SHARCGS

Approaches to graph reduction

Filter overlaps CABOG

Greedy contig extension SSAKE, SHARCGS, VCAKE

Collapse simple paths CABOG, Newbler Euler, Velvet, SOAP
Erosion of spurs CABOG, Edena Euler, Velvet, AllPaths, SOAP
Transitive overlap reduction Edena

Bubble smoothing Edena Euler, Velvet, SOAP
Bubble detection AllPaths

Reads separate tangled paths Euler, SOAP

Break at low coverage Velvet, SOAP

Break at high coverage CABOG Euler

High coverage indicates repeat CABOG Velvet

Special use of long reads Shorty Velvet

Graph partitions

Partition by K-mers ABySS

Partition by scaffolds AllPaths

Miller, genomics, 2010, 95(6):315-27

Comparison of Assembly tools

Algorithm Feature Greedy Assemblers OLC Assemblers DBG Assemblers
Modeled features of reads

Base substitutions Euler, AllPaths, SOAP
Homopolymer miscount CABOG

Concentrated error in 3’ end Euler

Flow space Newbler

Color space Shorty Velvet

Removal of erroneous reads

Based on K-mer frequencies Euler, Velvet, AllPaths
Based on K-mer freq and QV AllPaths

For multiple values of K AllPaths

By alignment to other reads CABOG

By alignment and QV SHARCGS

Correction of erroneous base calls

Based on K-mer frequencies Euler, SOAP

Based on Kmer freq and QV AllPaths

Based on alignments CABOG

Miller, genomics, 2010, 95(6):315-27

Comparison of the effect of various
coverage depths on average contig length

s SSAKE w o o= Euler-sr
-« + Velvet — = ABYSS
- = = SOAPdenovo

4.5

LOG(NS0)

10x 20x 30x 40x 50x 60x
Coverage Depth

70x 80x

Read length =35

Lin Y et al. Bioinformatics 2011;27:2031-2037

LOG(NS0)

e SSAKE w o o« Euler-sr

- -« Velvet = ABYSS

- = = SOAPdenovo
45

4
3.5

3
25

2

10x 20 40x 70x 80x
* » 3%’:wemge ep&’x » |

Read length =75

Couple issues

* Try different assemblers and compare their
results.

* Need a big fat memory computer (from 16GB
to 1TB).

* Running time is long: from several hours to
several days.

Running time

Runtime (s)

Bench.Seq E.coli C.ele H.sap-2 H.sap-3
(Length: bp) 4.6M) (2095M) (50.3M) (100.5M)

SSAKE 2,776 - - -

VCAKE 1,672 16,742 - .

Euler-sr 1,689 11,961 29,622 —--

SE Edena 895 8,450 17,043 ---
Velvet 205 1,003 2,786 6,098
ABySS 265 1,300 3,307 6,608
SOAPdenovo 62 253 560 1,029

SSAKE 9,163 --- - -

Euler-sr 1,455 15,068 ——- -

PE Velvet 229 1,351 55,581 -
ABySS 458 3,081 9,199 21,683

SOAPdenovo 78 374 889 2,257

Lin Y et al. Bioinformatics 2011;27:2031-2037
‘" denotes runtime is too long (>10 days) to get assembly results

RAM used

RAM (MB)
Bench.Seq E.coli C.ele H.sap-2 H.sap-3
(Length: bp) 4.6M) (209M) (50.3M) (100.5M)
SSAKE 9,933 - -—- -
VCAKE 4,099 17,408 --- -
Euler-sr 1,536 7,065 13,312 -—-
SE Edena 1,741 7,557 30,720 -—-
Velvet 1,229 4,045 9,830 22528
ABySS 1,126 3,993 8,909 18432
SOAPdenovo 935 2,867 8,089 18227
SSAKE 16,384 - --- ---
Euler-sr 1,638 7,578 --- ---
PE Velvet 1,331 5,324 30,720 -
ABySS 950 4,505 9,830 18,432
SOAPdenovo 1,638 5,939 10,342 19,456

‘~” denotes the RAM of computer is not

enough

Lin Y et al. Bioinformatics 2011;27:2031-2037

Whole genome sequencing

 De Novo whole genome sequencing

 Mapping assembly (Reference-guided
assembly) (Resequencing)

Paired-end sequencing

* Paired-End sequencing (for Mate-pairs)
— Sequence two ends of a fragment of known size.

/ First 25bp

————————— >
I

\ |
DNA fragment of known length /

Last 25bp

— Currently fragment length (insert size) can range from 200
bps — 10,000 bps

— Paired-end sequencing is helpful for assembly and locating
repeat. It also can detect rearrangements, including
insertions and deletions (indels) and inversions.

— As paired end reads are more likely to align to a reference,
the quality of the entire data set improves

i Paired-end sequencing
1Fragmcnt (200-500bp) by I I I u m i n a

Solid-phase amplification and
Cyclic reversible termination

A simple modification to the
standard single-read DNA
library preparation.

Both the forward and reverse
e template strands of each
cluster can be sequenced.

Mate-pair libraries

b c

llumina 5 Roche 454 SOLID
1 1

6 5 CA CA 5 1A A

2 < ’ biotinylated adaptor

Circularization
5 3 3

A1l
ey
3 =
——
350-600 bp
—Bnai LA1 CA LA2 P1 1A P2
4 = pﬁ Flow cell 4 f—1 e — - — e
—— [—— — [——
~150bp ~150 bp 50-75bp 50-75 bp
—)36 b
5 — Flow cell ~400 bp 4— ——50 bp —$50 bp
5 Bead m— e 5 Bead [e———}
— —
aeee——— e——
6 IS 0 6 L
— — —

Use computer software to
remove adaptor sequences Berglund et al. Investigative Genetics 2011 2:23

De Novo sequencing

New species/strains

Challenge of assembly with short reads
— 8x coverage of 3 GB genome = 750 million fragments
— Exponential problem for all-vs-all algorithm (overlap)

Big problem with repeats
Assemble contigs, fill gaps
Paired-end reads are essential

Shotgun Sequencing

Large DNA molecule

,1, fragmentation

Shotgun sequencing \/ \/
is a laboratory pi—
technique for - — = —

determining the DNA / \
CATACACGTAGCTATACG
sequence of an Assembly o

. | A e oing GCTATCAGGCTAGGTTA
organism's genome. v

Assembled GCTATCAGGCTAGGTTACAGTGCATGCATACACGTAGCTATACG

sequence

* Breaking the genome into a collection of small
DNA fragments

* Sequencing.
* Reconstitute the genome.

Assembly Pipeline

Preprocess
& estimate

Assembling

Scaffolding

Repeat
Removing

Shotgun sequencing
statistics

Typical contig coverage

>

(D) . .)
S Imagine raindrops on a sidewalk:
>
; § It can be modeled by Poisson distribution
5]
4]
3]
2.
il
>
Contig

Reads

L =read length ——
G = genome size

N = number of reads

¢ = coverage= (NL / G) Average coverage 5

[.ander-Waterman statistics

3500

L = read length s
G = genome size
N = number of reads o
¢ = coverage =(NL / G)
T = minimum detectable overlap :
c=1-T/L

600000

500000 -

400000 -

E(# of islands) = Ne°
E(island size) = L((e*°-1)/¢c+1-0) ¢ |
contig = island with 2 or more reads oo |

2]

300000 -

Contig length

35

Smith-Waterman algorithm for sequence comparison

Example

Genome size: 1 Mbp Read Length: 600

N #1slands | #contigs | bases not in | bases not in
any read contigs
1,667 655 614 698 367,806
5,000 304 250 121 49,787
8,334 78 57 20 6,735
13,334 7 5 1 335

36

Experimental data

cov?rage # ctgs % >2X avg ctg size (L-W) | max ctg size | # ORFs
1 284 54 1,234 (1,138) 3,337 526
3 597 67 1,794 (4,429) 9,589 1,092
5 548 79 2,495 (21,791) 17,977 1,398
8 495 85 3,294 (302,545) 64,307 1,762

complete 1 100 1.26 M 1.26 M 1,329

Numbers based on artificially chopping up the genome of
Wolbachia pipientis dMel

Errors in Lander-Waterman Estimate

Lander-Waterman has errors:
* repeats

* GC/AT rich regions

e other low complexity regions

* cloning biases in shotgun libraries

Expected average contig length for a range of different read lengths and coverage values.

s |
dog N50
X
o
o
- dog me
é“ panda N50 +
L=
2
LR panda mean +
o
=
O
(@)
©
o)
O
1} x|
Q_ A
n PV
m 1000bp|| (D
@ 710 bp Q
m 250 bp Q.
§>_’ _ @ 100 bp —_—
B 52bp D
W 30bp =
0Q
| | [| | | | [| ~
0 5 10 15 20 25 30 35 40 =

Read Coverage

Dog: 2.5 billion bp
Panda: 3 billion bp

Copyright © 2010 by Cold Spring Harbor Laboratory Press Schatz M C et al. Genome Res. 2010;20:1165-1173

Input sequence

Contigs
Organism/genome Avgerage No.of Read Pair
size Assembler/status® Type Pair size read (bp) reads coverage® coverage® No. N50 Max Total
Human (H. ABYSS published GA 210bp 3546 3.5B 45X 120x 276 M 1.5kb 18.8kb 2.18 Gb
sapiens)/3.0 Gb 2009
Grapevine (V. Sanger 2-10kb 579 595M 6.9X 21X

Myriad published

2007 Sanger 40 kb 460 144k 0.13x 44x 58,611 18.2kb 238kb 531 Mb?

Sanger 120 kb 369 68 k 0.02x 4.2X
454 None 169 125M 4.2X —

vinifera)/500 Mb

Cucumber (C.
sativus)/367 Mb

Sanger 2-6 kb 439 2.08M 3.35X 9.9X

RePS2 published o der 40kb 496 339K 0.46x 16.7x

62,412 19,807 NR 226 Mb

2002 sanger 140kb 551 332k 0.04x 5.6x
GA 200bp 42 282M 325x 768X NR 26kb NR 204 Mb
GA 400bp 44 173M 20.6X 94.4X
GA 2kb 53 105M 153x 286X NR 125kb NR 190 Mb
Panda (A. COAPdenove GA 150 45 131B 245x 433X
melanoleura)/2.4 Gb *ONCENNO - GA 500 67 917M 255x 902X 200,604 36,728 434635 2.25 Gb
P GA 2kb 71 397M 11.8X 192
GA 5kb 38 505M 80X 533x
GA 10kb 35 254M 3.7X 571
Shavdberry(F CABOG and 454 Nonme 209 7.73M 7.3x _
s Velvet 454 None 368 787M 13.2x — 16,487 28,072 215,349 202 Mb
announced 454 2.5kb 193 2.39 M 2.1X% 6.9%
454 20kb 236 1.8M 1.7X 20
GA None 76 36 M 12.4X% —
SOLD 2kb 25 130M 014X 6.4
454 3kb 180 6M 1% 8x
T”'k‘;,y (M. Y CABOG g 454 20kb 195 2M 0.3x 18 128,271 12,594 90kb 931 Mb
galiopavo)/1. announce 454 None 366 13M 4x _
GA 180bp 74 200M 13X 16x

GA None 74 200 M 13>Schatz M-C et al. Genome Res. 2010;20:1165-117:

One more example

For yeast 12Mbp

* read length: 200-400 bp

e coverage: 50X (how many reads do we
need?)

 paired-end read insert size: 8kb (better to
make multiple libraries with different insert

sizes.)

Assembly Pipeline
& estimate

Repeat
Removing

Velvet: small genomes

CE—

ABySS: large genome

—————

Scaffolding

* Scaffolding groups contigs into subsets
with known order and orientation.

* Nodes are contigs

* Directed edge is between two nodes if
they are adjacent in the genome.

Contig1 > Contig 2

Scaffolding

* Mate pairs, if in different contigs, have a
chance of being neighbors.

Mate pairs orient contigs during assembly

/ First 25bp

—
\ P
DNA fragment of known length /

Last 25bp

Scaffolding

|
Contigs from assembly

Align reads from short
insert or long insert
library

Join contigs using evidence from
‘ paired end data

Scaffold

Scaffolding Algorithm
* Find all connected components

* Find a consistent orientation for all nodes in the
graph (all contigs).
— Nodes (contigs) have two types of edges
* Same orientation
* Different orientation

— Make sure linked contigs have consistent
orientation.

— Optimization problem — find the smallest number
of edges to be removed so that all contigs have
consistent orientation.

* Find the Hamiltonian path again.

Scaffolding software

Some assembly software, such velvet, can do scaffolding
as well.

Bambus - http://www.cbcb.umd.edu/software/bambus

SSPACE -
http://www.baseclear.com/landingpages/basetools-a-
wide-range-of-bioinformatics-solutions/sspacev12/

GRASS - http://code.google.com/p/tud-scaffolding/

Additional techniques for orientation

* Physical mapping. Using information from Bacterial
Artificial Chromosome (BAC)-based physical maps.
Physical maps are built by clustering together of
BACs sharing portions of a DNA “fingerprint,” which
is a pattern of DNA fragments of various sizes.

* Using markers along a DNA strand as independent
information for scaffolding software. Markers are
known sequences of nucleotides and tags. Markers
are searched in the contigs.

e Using large scale maps of landmarks that lie along
the the chromosomal DNA.

Scaffolding

e Additional information is also useful:

— Sequences of closely related organisms are also
used as scaffolding information.

Example: aligning scaffolds of a mouse genome to
the human genome

Scaffolding: Issues

* Errorsinlength of inserts (affecting distances between
clone mates)
* Physical mapping is error prone.

 first builds a sequence based on linking information
with high confidence, then factors in linking information

with lower confidence.

Assembly Pipeline

Preprocess
& estimate

Assembling

Scaffolding

Repeat <
Removing

The variability 1n repetitiveness among

species species.

The ratio == the
percentage of the .
genome that is . .
covered by unique ¢ °
sequences of length c -
k or longer.
m fruit fly (130 Mbp)

g | H T vagipalis(176 Mbp)
The figure shows how = ohicken (1 (gssétﬂsp)
much of each genome B T (61 o)
would be covered by k- S -
mers (reads) that occur 0 200 400 600 800 1000

exactly once. K-mer Length (bp)

The k-mer uniqueness ratio for five well-known

organisms and one single-celled human parasite.
Copyright © 2010 by Cold Spring Harbor Laboratory Press Schatz M C et al. Genome Res. 2010;20:1165-1173

Repeat Control Issues

* Assembly programs should detect repeats in
the assembly process and not after.

—Ilncorrect genome reconstruction

* Assemblers should try to resolve correctly as
many repeats as possible.

— Avoid intensive human labor

Repeat Control — When? & How?

* pre-assembly: find fragments that belong to repeats
— statistically (most existing assemblers)
— repeat database (RepeatMasker)

* during assembly: detect "tangles" indicative of repeats

(Pevzner, Tang, Waterman 2001) v

------ o

—
* post-assembly: find repetitive regions and potential

mis-assemblies.
— Reputer, RepeatMasker

— "unhappy" mate-pairs (too close, too far, mis-
oriented) 54

Detecting repeats
pre-assembly:

e Statistical methods

— Assemblers assume that reads are sampled
uniformly at random.

— Significant deviations from average coverage
flagged as repeats.

— frequent k-mers are ignored

— “arrival” rate of reads in contigs compared
with theoretical value.
(e.g., 800 bp reads & 8x coverage - reads "arrive" every 100 bp)

Detecting repeats
during assembly

 Example: In Euler assembly program

— Finds repeats by complex parts of the graph
constructed during the assembly process.

— Researchers look into these complex areas to try
and resolve repeats.

— Assemblers can use clone mate information to
find incorrect assemblies. This is based on finding
clone-mate pairs too close or too far from one
another. (“unhappy” mate-pairs)

Detecting repeats
post-assembly: Mis-assembled repeats

excision
collapsed tandem | I m
T/ TG AN T\ T\
L AL A
111
Y
11
N
rearrangement

I II II 1%
e/ b/ "\ & & ¢/

W 11 v

57

Repeat resolution

* Assemblers deduce that areas covered by a large
number of reads may show an over-collapsed
repeat.

* Problems with this - samples are not uniformly
distributed (for example, non-random libraries and
poor clonability regions). leads to false positives.

* Repeats with low copy number are missed - leads

to false negatives.

58

Repeat resolution

 Techniques for repairing sequencing errors during repeat
resolution

— find clusters of reads where the clusters share
differences.

* For example, four reads contain an A, four contain a B.
it is likely that the first four reads are from one copy
and the last four from a different one.

— Drawbacks are if certain areas of the sequence
have low coverage.

— Difficult to separate from true polymorphism

Discussion:
Virtual genome assembly

Plant mitochondrion genome 500,000 bp DNA circular

How can you get mitochondria DNA? What problems do we need to concern for
this step?

For DNA fragmenting, what sizes of DNA fragments will you use? A. 1Kbp, B. 5kbp,
C. both

Pair-ended or single ended?

What depth do you sequence? how many lanes do you need if you use illumina
hiseq 20007 or how many reads do you need to get?

Which assembler will you use? Why?

What computer do you used to do assemble? A. 4GB laptop B. 50GB workstation
C. computer cluster in HCC

According to your estimate, how long does it take for assemble? A. 30 minutes B.2
hours C. 12 hours D. 4 days

What software do you used to do scaffold? how long does it take?

What is longest gap in one scaffold? How do you fill gaps?

How do you determine if your assembled genome is good enough?

how do you annotate genes?

On Thursday, Jan 30.

