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Main	
  algorithm	
  used:	
  
•  Greedy	
  algorithms	
  
•  Overlap	
  Layout	
  Consensus	
  
•  De	
  brujin	
  graphs	
  



Greedy Assembly 

•  Build a rough map of 
fragment overlaps 
(pairwise alignment) 

•  Pick the largest scoring 
overlap 

•  Merge the two fragments 
•  Repeat until no more 

merges can be done 



Greedy Assembly 
•  Advantages:	
  

–  Simple	
  and	
  easy	
  to	
  implement	
  	
  
–  effec*ve	
  

•  Disadvantages	
  
–  Since	
  local	
  informa*on	
  is	
  considered	
  at	
  each	
  step,	
  the	
  
assembler	
  can	
  be	
  easily	
  confused	
  by	
  complex	
  repeats,	
  
leading	
  to	
  mis-­‐assemblies.	
  

–  Local	
  approach.	
  Easy	
  to	
  be	
  trapped	
  into	
  a	
  local	
  
op*mal	
  solu*on	
  (local	
  minimum).	
  

–  Early	
  mistakes	
  create	
  bad	
  assemblies.	
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   R2	
  

R5	
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Try	
  to	
  find	
  the	
  Hamiltonian	
  path:	
  
•  A	
  path	
  in	
  the	
  graph	
  contains	
  each	
  node	
  exactly	
  once.	
  
•  Following	
  the	
  Hamiltonian	
  path,	
  combine	
  the	
  
overlapping	
  sequences	
  in	
  the	
  nodes	
  into	
  the	
  
sequence	
  of	
  the	
  genome	
  

•  Computa*onally	
  expensive	
  (NP-­‐hard	
  problem)	
  

CGTAGTGGCAT 
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Overlap-layout-consensus 
•  BeYer	
  than	
  Greedy	
  algorithm.	
  It	
  can	
  generate	
  correct	
  

order	
  of	
  con*gs	
  that	
  the	
  Greedy	
  algorithms	
  may	
  have	
  
errors.	
  

•  No	
  efficient	
  algorithm	
  to	
  find	
  the	
  Hamiltonian	
  path	
  
•  Short	
  fragment	
  length	
  =	
  very	
  small	
  overlap	
  therefore	
  

many	
  false	
  overlaps.	
  
•  Overlap	
  discovery	
  is	
  sensi*ve	
  to	
  minimum	
  overlap	
  length	
  

and	
  minimum	
  percent	
  iden*ty	
  required	
  for	
  an	
  overlap.	
  
•  Overlap	
  discovery	
  is	
  also	
  *me	
  consuming.	
  
•  Large	
  number	
  of	
  reads	
  +	
  short	
  overlap	
  +	
  higher	
  error	
  are	
  

challenging	
  for	
  the	
  overlap	
  -­‐	
  layout	
  -­‐	
  consensus	
  approach	
  
•  Can’t	
  assemble	
  repeat	
  longer	
  than	
  read	
  length	
  
•  It	
  is	
  mostly	
  used	
  with	
  Sanger	
  or	
  454	
  data.	
  



Main	
  algorithm	
  used:	
  
•  Greedy	
  algorithms	
  
•  Overlap	
  Layout	
  Consensus	
  
•  De	
  bruijn	
  graphs	
  



De	
  Bruijn	
  Graphs	
  

Flicek,	
  Nature	
  Methods,	
  2009	
  

1.  Get	
  k-­‐bp	
  (k-­‐mer)	
  subsequences	
  for	
  
reads.	
  	
  

2.  k-­‐mers	
  in	
  the	
  reads	
  are	
  collected	
  
into	
  nodes	
  and	
  the	
  coverage	
  at	
  
each	
  node	
  is	
  recorded.	
  Link	
  two	
  k-­‐
mer	
  nodes	
  if	
  they	
  have	
  overlap.	
  

3.  the	
  graph	
  is	
  simplified	
  to	
  combine	
  
nodes	
  that	
  are	
  associated	
  with	
  the	
  
con*nuous	
  linear	
  stretches	
  into	
  
single,	
  larger	
  nodes	
  of	
  various	
  k-­‐
mer	
  sizes.	
  	
  

4.  error	
  correc*on	
  removes	
  the	
  *ps	
  
and	
  bubbles	
  that	
  result	
  from	
  
sequencing	
  errors	
  and	
  creates	
  a	
  
final	
  graph	
  structure	
  that	
  
accurately	
  and	
  completely	
  
describes	
  in	
  the	
  original	
  genome	
  
sequence.	
  



Differences between an overlap graph and a de Bruijn graph for assembly.  

Schatz M C et al. Genome Res. 2010;20:1165-1173 

Copyright © 2010 by Cold Spring Harbor Laboratory Press 



De	
  Bruijn	
  Graphs	
  example	
  

“It	
  was	
  the	
  best	
  of	
  *mes,	
  it	
  was	
  the	
  worst	
  of	
  *mes,	
  it	
  was	
  the	
  age	
  of	
  

wisdom,	
  it	
  was	
  the	
  age	
  of	
  foolishness,	
  it	
  was	
  the	
  epoch	
  of	
  belief,	
  it	
  was	
  

the	
  epoch	
  of	
  incredulity,....	
  “	
  

Dickens,	
  Charles.	
  A	
  Tale	
  of	
  Two	
  Ci*es.	
  1859.	
  London:	
  Chapman	
  Hall	
  

Velvet	
  example	
  courtesy	
  of	
  J.	
  Leipzig	
  2010	
  

•  For	
  the	
  purposes	
  of	
  illustra*on,	
  we	
  can	
  use	
  human	
  readable	
  text	
  
to	
  explore	
  how	
  assemblies	
  work.	
  

•  This	
  is	
  an	
  example	
  taken	
  from	
  Leipzig	
  et	
  al	
  2001.	
  
•  In	
  it	
  he	
  uses	
  the	
  opening	
  paragraph	
  from	
  Dickens’	
  “A	
  tale	
  of	
  two	
  

ci*es”.	
  
•  It	
  is	
  an	
  appropriate	
  example	
  because	
  like	
  genomes,	
  it	
  contains	
  

strings	
  that	
  are	
  repeat	
  over	
  and	
  over.	
  



De	
  Bruijn	
  Graphs	
  example	
  
itwasthebestogimesitwastheworstogimesitwastheageofwisdomitwastheageoffoolishness…	
  

Generate	
  	
  random	
  ‘reads’	
   How	
  do	
  we	
  assemble?	
  

Tradi*onal	
  all-­‐vs-­‐all	
  comparisons	
  of	
  datasets	
  this	
  size	
  require	
  immense	
  
computa*onal	
  resources.	
  
	
  
De	
  Bruijn	
  solu*on:	
  Construct	
  a	
  graph	
  efficiently	
  	
  

fincreduli	
   geoffoolis	
   Itwasthebe	
   Itwasthebe	
   geofwisdom	
   itwastheep	
   epochofinc	
   *mesitwas	
   stheepocho	
   nessitwast	
   wastheageo	
   theepochof	
   stheepocho	
   hofincredu	
  
estogimes	
  eoffoolish	
  lishnessit	
  hokeliefi	
  pochofincr	
  itwasthewo	
  twastheage	
  togimesit	
  domitwasth	
  ochokelie	
  eepochoke	
  eepochoke	
  astheworst	
  chofincred	
  theageofwi	
  
iefitwasth	
   ssitwasthe	
   astheepoch	
   efitwasthe	
   wisdomitwa	
   ageoffooli	
   twasthewor	
   ochokelie	
   sdomitwast	
   sitwasthea	
   eepochoke	
   ffoolishne	
   eofwisdomi	
   hebestogi	
  
stheageoff	
   twastheepo	
   eworstogi	
   stogimesi	
   theepochof	
   esitwasthe	
   heepochofi	
   theepochof	
   sdomitwast	
   astheworst	
   rstogimes	
   worstogim	
   stheepocho	
   geoffoolis	
  
ffoolishne	
   *mesitwas	
   lishnessit	
   stheageoff	
   eworstogi	
   orstogime	
   fwisdomitw	
   wastheageo	
   heageofwis	
   incredulit	
   ishnessitw	
   twastheepo	
   wasthewors	
   astheepoch	
  
heworstog	
   okeliefit	
   wastheageo	
   heepochofi	
   pochofincr	
   heageofwis	
   stheageofw	
   fincreduli	
   astheageof	
   wisdomitwa	
   wastheageo	
   astheepoch	
   olishnessi	
   astheepoch	
  
itwastheep	
   twastheage	
   wisdomitwa	
   keliefitw	
   bestogime	
   epochokel	
   theepochof	
   sthebestof	
   lishnessit	
   hokeliefi	
   Itwasthebe	
   ishnessitw	
   sitwasthew	
   ageofwisdo	
  
twastheage	
   esitwasthe	
   twastheage	
   shnessitwa	
   fincreduli	
   keliefitw	
   theepochof	
   mesitwasth	
   domitwasth	
   ochokelie	
   heageofwis	
   ogimesitw	
   stheepocho	
   bestogime	
  
twastheage	
   foolishnes	
   gimesitwa	
   thebestog	
   itwastheag	
   theepochof	
   itwasthewo	
   okeliefit	
   bestogime	
   mitwasthea	
   imesitwast	
   *mesitwas	
   orstogime	
   estogimes	
  
twasthebes	
  stogimesi	
  sdomitwast	
  wisdomitwa	
  theworstof	
  astheworst	
  sitwasthew	
  theageoffo	
  eepochoke	
  theageofwi	
  foolishnes	
  incredulit	
  okeliefit	
  chofincred	
  beliefitwa	
  
beliefitwa	
   wisdomitwa	
   eageoffool	
   eoffoolish	
   itwastheag	
   mesitwasth	
   epochofinc	
   ssitwasthe	
   itwastheep	
   astheageof	
   stheageoff	
   sitwasthee	
   thebestog	
   oolishness	
  
heepochok	
  ochokelie	
  wastheepoc	
  bestogime	
  mesitwasth	
  ebestogim	
  pochofincr	
  

…etc.	
  to	
  10’s	
  of	
  millions	
  of	
  reads	
  



De	
  Bruijn	
  Graphs	
  
Step	
  1:	
  “Kmerize”	
  	
  the	
  data	
  

Reads:	
   theageofwi	
  

age	
  
geo	
  
eof	
  
ofw	
  
fwi	
  

sthebestof	
  

sth	
  
the	
  
heb	
  
ebe	
  
bes	
  
est	
  
sto	
  
tof	
  

astheageof	
  

ast	
  
sth	
  
the	
  
hea	
  
eag	
  
age	
  
geo	
  
eof	
  

worstogim	
  

wor	
  
ors	
  
rst	
  
sto	
  
tof	
  
og	
  
gi	
  
*m	
  

imesitwast	
  

ime	
  
mes	
  
esi	
  
sit	
  
itw	
  
twa	
  
was	
  
ast	
  

…..etc	
  for	
  all	
  reads	
  in	
  the	
  dataset	
  

Kmers	
  :	
  
(k=3)	
  

the	
  
hea	
  
eag	
  



De	
  Bruijn	
  Graphs	
  

age	
   geo	
   eof	
   ofw	
   fwi	
  hea	
   eag	
  the	
  
sth	
   the	
  

heb	
   ebe	
   bes	
   est	
   sto	
   tof	
  

ast	
   sth	
  
the	
   hea	
   eag	
   age	
   geo	
   eof	
  

Look	
  for	
  k-­‐1	
  overlaps:	
  given	
  by	
  the	
  reads	
  

wor	
   ors	
   rst	
  
sto	
   tof	
  

og	
   gi	
   *m	
  

ime	
   mes	
  

esi	
  
sit	
  itw	
  twa	
  

was	
  

ast	
  

…..etc	
  for	
  all	
  ‘kmers’	
  in	
  the	
  dataset	
  

Step2	
  Build	
  the	
  graph	
  



De	
  Bruijn	
  Graphs	
  
	
  step3:	
  simplify	
  the	
  graph	
  

•  The	
  final	
  step	
  is	
  to	
  remove	
  redundancy,	
  result	
  in	
  the	
  final	
  De	
  Bruijn	
  Graph	
  
representa*on	
  of	
  our	
  genome.	
  

•  the	
  overlaps	
  between	
  reads	
  are	
  implicit	
  in	
  the	
  graph,	
  so	
  all	
  the	
  millions	
  v.s	
  
millions	
  of	
  comparisons	
  are	
  not	
  required.	
  

•  On	
  the	
  downside,	
  informa*on	
  is	
  lost	
  as	
  repe**ve	
  sequences	
  are	
  “collapsed”	
  
into	
  a	
  single	
  representa*on.	
  



De	
  Bruijn	
  Graphs	
  
step4:	
  Create	
  con*gs	
  

Find	
  the	
  Hamiltonian	
  path	
  or	
  cycle	
  in	
  the	
  De	
  Bruijn	
  
graph.	
  Each	
  path	
  in	
  the	
  simplified	
  De	
  Bruijn	
  graph	
  is	
  
a	
  Hamiltonian	
  path.	
  A	
  Hamiltonian	
  path	
  	
  is	
  a	
  con*g.	
  	
  



Common Problems 
•  Spurs:	
  dead-­‐end	
  sequences	
  
•  Bubbles:	
  divergent	
  paths	
  that	
  then	
  converge	
  
•  Frayed	
  rope:	
  convergent	
  then	
  divergent	
  paths	
  
•  Cycles:	
  paths	
  convergent	
  upon	
  themselves	
  E88'9B75)$*4B7'98)

W*3F$ *3F3$

3F3*$

3F3W$

F3*W$

F3W3$

3*WF$ *WFF$

Spurs 

W*3F$ *3F3$

3F3*$

3F3W$

F3*W$

F3W3$

3*WF$ *WFF$

Bubbles 

3W3F$ W3FF$

WFFW$

3FFW$

FFW*$

W3F3$

*3F3$

3F3*$ F3*W$ 3*WF$ *WFF$
Frayed 

Rope 
WFFW$

3*3F$

FW3F$ FFW*$

FFW3$

Cycles W3F*$

3F*W$

*W3F$

F*W3$



Resolve	
  graph	
  complexity	
  



Strengths	
  and	
  problems	
  	
  
of	
  De	
  Bruijn	
  approach	
  

Strengths:	
  
•  No	
  need	
  to	
  calculate	
  the	
  overlaps	
  
•  Size	
  of	
  the	
  final	
  graph	
  is	
  propor*onal	
  to	
  the	
  genome	
  size	
  
•  successfully	
  for	
  very	
  short	
  reads	
  (<50bp)	
  

Problems:	
  
•  The	
  main	
  drawback	
  to	
  the	
  de	
  Bruijn	
  approach	
  is	
  the	
  loss	
  

of	
  informa*on	
  caused	
  by	
  decomposing	
  a	
  read	
  into	
  a	
  
path	
  of	
  k-­‐mers.	
  

•  require	
  an	
  enormous	
  amount	
  of	
  computer	
  space	
  
•  Can	
  only	
  resolve	
  k	
  long	
  repeat	
  
•  Loose	
  connec*vity	
  when	
  create	
  the	
  con*gs	
  
	
  



Strengths	
  and	
  problems	
  	
  
of	
  De	
  Bruijn	
  approach	
  

Pros:	
  correctly	
  links	
  two	
  sequences	
  
without	
  having	
  to	
  compute	
  overlap	
  
score.	
  (above	
  case)	
  
Cons:	
  two	
  sequences	
  are	
  linked	
  
without	
  any	
  real	
  overlap.	
  (leg	
  case)	
  

Schlebusch,	
  2012	
  



De	
  Bruijn	
  Assemblers	
  
•  Euler:	
  hYp://nbcr.sdsc.edu/euler/	
  ,	
  Sanger,	
  454,	
  2001-­‐2006	
  

•  Velvet:	
  hYp://www.ebi.ac.uk/~zerbino/velvet/,	
  small	
  genomes,	
  
Sanger,	
  454,	
  Solexa,	
  SOLiD,	
  2007-­‐2009	
  (very	
  good	
  for	
  small	
  genome)	
  

•  ABySS:	
  hYp://www.bcgsc.ca/plarorm/bioinfo/sogware/abyss,	
  large	
  
genome,	
  Solexa,	
  SOLiD,	
  2008-­‐2011	
  (for	
  very	
  large	
  genome)	
  

•  SOAP-­‐denovo:	
  hYp://soap.genomics.org.cn/soapdenovo.html,	
  
Solexa,	
  2009	
  

•  ALLPATH-­‐LG:	
  
hYp://www.broadins*tute.org/sogware/allpaths-­‐lg/blog/,	
  	
  large	
  
genome,	
  Solexa,	
  SOLiD,	
  2011	
  (very	
  good	
  performance	
  bu	
  require	
  2	
  
lib	
  of	
  different	
  insert	
  sizes)	
  

•  IDBA-­‐UD:	
  hYp://i.cs.hku.hk/~alse/hkubrg/projects/idba_ud/,	
  Sanger,
454,Solexa,	
  2010	
  	
  (metagenomic,	
  doesn’t	
  rely	
  on	
  coverage	
  to	
  remove	
  
error)	
  



Comparison	
  of	
  Assembly	
  tools	
  

Miller,	
  genomics,	
  2010,	
  95(6):315-­‐27	
  

sink node. Each assembler searches the graph but each constrains its
searches for reasons of scale. A search in CABOG's overlap graph
follows only one outward edge per node. Searches in AllPaths and
Velvet examine local regions of the K-mer graph that are anchored by
large contigs and populated by direct and transitive paired-end
linkage. Euler and ABySS seem to rely on branch-and-bound search
algorithms.

Common to most assemblers, a core set of features is apparent:

• Error detection and correction based on sequence composition of
the reads.

• Graph construction to represent reads and their shared sequence.
• Reduction of simple non-intersecting paths to single nodes in the
graph.

• Removal of error-induced paths. These are recognized as spurs or
bubbles.

• Collapse of polymorphism-induced complexity. This is recognized
as bubbles.

• Simplification of tangles using information outside the graph.
Individual reads or paired-end reads act as constraints on path
distance and outcome.

• Conversion of reduced paths to contigs and scaffolds.
• Reduction of alignments to a consensus sequence.

OLC and DBG are two robust approaches to assembly. Both rely to
some extent on a set of overlaps between the input reads. Both
represent the overlaps in a directed graph. Their different graph
representations are similar if not equivalent [66]. The OLC approach

Table 1
Feature comparison between de novo assemblers for whole-genome shotgun data from next-generation sequencing platforms. OLC refers to the overlap/layout/consensus
architecture. DBG refers to the de Bruijn graph architecture. The table is based on the literature cited in the text. It may not reflect the current state of each software package.

Algorithm Feature Greedy Assemblers OLC Assemblers DBG Assemblers

Modeled features of reads

Base substitutions Euler, AllPaths, SOAP
Homopolymer miscount CABOG
Concentrated error in 3′ end Euler
Flow space Newbler
Color space Shorty Velvet

Removal of erroneous reads

Based on K-mer frequencies Euler, Velvet, AllPaths
Based on K-mer freq and QV AllPaths
For multiple values of K AllPaths
By alignment to other reads CABOG
By alignment and QV SHARCGS

Correction of erroneous base calls

Based on K-mer frequencies Euler, SOAP
Based on Kmer freq and QV AllPaths
Based on alignments CABOG

Approaches to graph construction

Implicit SSAKE, SHARCGS, VCAKE
Reads as graph nodes CABOG, Newbler, Edena
K-mers as graph nodes Euler, Velvet, ABySS, SOAP
Simple paths as graph nodes AllPaths
Multiple values of K Euler
Multiple overlap stringencies SHARCGS

Approaches to graph reduction

Filter overlaps CABOG
Greedy contig extension SSAKE, SHARCGS, VCAKE
Collapse simple paths CABOG, Newbler Euler, Velvet, SOAP
Erosion of spurs CABOG, Edena Euler, Velvet, AllPaths, SOAP
Transitive overlap reduction Edena
Bubble smoothing Edena Euler, Velvet, SOAP
Bubble detection AllPaths
Reads separate tangled paths Euler, SOAP
Break at low coverage Velvet, SOAP
Break at high coverage CABOG Euler
High coverage indicates repeat CABOG Velvet
Special use of long reads Shorty Velvet

Graph partitions

Partition by K-mers ABySS
Partition by scaffolds AllPaths

Uses for mate pairs

Constrain path searches Euler, Velvet, AllPaths
Guide path selection Euler, Allpaths
Detect misassembled contigs CABOG, Shorty
Merge contigs or fill gaps CABOG, Shorty Velvet, ABySS, SOAP
Transitive link reduction CABOG SOAP
Detect, avoid repeat contigs CABOG Velvet, SOAP
Create scaffolds CABOG, Shorty Euler, Velvet, AllPaths, SOAP
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Create scaffolds CABOG, Shorty Euler, Velvet, AllPaths, SOAP
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sink node. Each assembler searches the graph but each constrains its
searches for reasons of scale. A search in CABOG's overlap graph
follows only one outward edge per node. Searches in AllPaths and
Velvet examine local regions of the K-mer graph that are anchored by
large contigs and populated by direct and transitive paired-end
linkage. Euler and ABySS seem to rely on branch-and-bound search
algorithms.

Common to most assemblers, a core set of features is apparent:

• Error detection and correction based on sequence composition of
the reads.

• Graph construction to represent reads and their shared sequence.
• Reduction of simple non-intersecting paths to single nodes in the
graph.

• Removal of error-induced paths. These are recognized as spurs or
bubbles.

• Collapse of polymorphism-induced complexity. This is recognized
as bubbles.

• Simplification of tangles using information outside the graph.
Individual reads or paired-end reads act as constraints on path
distance and outcome.

• Conversion of reduced paths to contigs and scaffolds.
• Reduction of alignments to a consensus sequence.

OLC and DBG are two robust approaches to assembly. Both rely to
some extent on a set of overlaps between the input reads. Both
represent the overlaps in a directed graph. Their different graph
representations are similar if not equivalent [66]. The OLC approach

Table 1
Feature comparison between de novo assemblers for whole-genome shotgun data from next-generation sequencing platforms. OLC refers to the overlap/layout/consensus
architecture. DBG refers to the de Bruijn graph architecture. The table is based on the literature cited in the text. It may not reflect the current state of each software package.

Algorithm Feature Greedy Assemblers OLC Assemblers DBG Assemblers

Modeled features of reads

Base substitutions Euler, AllPaths, SOAP
Homopolymer miscount CABOG
Concentrated error in 3′ end Euler
Flow space Newbler
Color space Shorty Velvet

Removal of erroneous reads

Based on K-mer frequencies Euler, Velvet, AllPaths
Based on K-mer freq and QV AllPaths
For multiple values of K AllPaths
By alignment to other reads CABOG
By alignment and QV SHARCGS

Correction of erroneous base calls

Based on K-mer frequencies Euler, SOAP
Based on Kmer freq and QV AllPaths
Based on alignments CABOG

Approaches to graph construction

Implicit SSAKE, SHARCGS, VCAKE
Reads as graph nodes CABOG, Newbler, Edena
K-mers as graph nodes Euler, Velvet, ABySS, SOAP
Simple paths as graph nodes AllPaths
Multiple values of K Euler
Multiple overlap stringencies SHARCGS

Approaches to graph reduction

Filter overlaps CABOG
Greedy contig extension SSAKE, SHARCGS, VCAKE
Collapse simple paths CABOG, Newbler Euler, Velvet, SOAP
Erosion of spurs CABOG, Edena Euler, Velvet, AllPaths, SOAP
Transitive overlap reduction Edena
Bubble smoothing Edena Euler, Velvet, SOAP
Bubble detection AllPaths
Reads separate tangled paths Euler, SOAP
Break at low coverage Velvet, SOAP
Break at high coverage CABOG Euler
High coverage indicates repeat CABOG Velvet
Special use of long reads Shorty Velvet

Graph partitions

Partition by K-mers ABySS
Partition by scaffolds AllPaths

Uses for mate pairs

Constrain path searches Euler, Velvet, AllPaths
Guide path selection Euler, Allpaths
Detect misassembled contigs CABOG, Shorty
Merge contigs or fill gaps CABOG, Shorty Velvet, ABySS, SOAP
Transitive link reduction CABOG SOAP
Detect, avoid repeat contigs CABOG Velvet, SOAP
Create scaffolds CABOG, Shorty Euler, Velvet, AllPaths, SOAP
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SOAPdenovo; in paired-end reads assembly of H.sap-3, Vel-

vet could not even finish the assembly. 

• In general, SOAPdenovo and ABySS were more efficient 

than other tools in terms of runtime and memory usage. 

SSAKE consumed the greatest amount of computational re-

sources. 

Table 6. Comparison of runtime and RAM in the computational 
demand test 

   Runtime (s) 

 
Bench.Seq 

(Length: bp) 
E.coli 
(4.6M) 

C.ele 
(20.9M) 

H.sap-2 
(50.3M) 

H.sap-3 
(100.5M) 

SSAKE 2,776 --- --- --- 
VCAKE 1,672 16,742 --- --- 
Euler-sr 1,689 11,961 29,622 --- 
Edena 895 8,450 17,043 --- 
Velvet 205 1,003 2,786 6,098 
ABySS 265 1,300 3,307 6,608 

SE 

SOAPdenovo 62 253 560 1,029 
SSAKE 9,163 --- --- --- 

Euler-sr 1,455 15,068 --- --- 
Velvet 229 1,351 55,581 --- 
ABySS 458 3,081 9,199 21,683 

PE 

SOAPdenovo 78 374 889 2,257 

  RAM (MB) 

 
Bench.Seq 

(Length: bp) 
E.coli 
(4.6M) 

C.ele 
(20.9M) 

H.sap-2 
(50.3M) 

H.sap-3 
(100.5M) 

SSAKE 9,933 --- --- --- 

VCAKE 4,099 17,408 --- --- 
Euler-sr 1,536 7,065 13,312 --- 
Edena 1,741 7,557 30,720 --- 
Velvet 1,229 4,045 9,830 22528 
ABySS 1,126 3,993 8,909 18432 

SE 

SOAPdenovo 935 2,867 8,089 18227 
SSAKE 16,384 --- --- --- 

Euler-sr 1,638 7,578 --- --- 
Velvet 1,331 5,324 30,720 --- 
ABySS 950 4,505 9,830 18,432 

PE 

SOAPdenovo 1,638 5,939 10,342 19,456 

Bench.Seq: Benchmark Sequence; s: second; MB: megabytes; SE: Single-End Reads 

Assembly; PE: Paired-End Reads Assembly. “---” denotes the RAM of computer is 

not enough or runtime is too long (greater than 10 days) to get assembly results. 

In this test, we also analyzed N50 lengths, sequence coverage, 

and assembly error rate. The results were consistent with several 

conclusions in previous sections (Supplemental Table 16). 

4 CONCLUSIONS AND DISCUSSIONS 

This study compared seven publically available and commonly 

used de novo assembly tools: SSAKE, VCAKE, Euler-sr, Edena, 

Velvet, ABySS and SOAPdenovo. These tools are specifically 

designed to assemble large numbers of short reads generated by 

next-generation sequencing platforms. 

In analyzing these tools, stronger performance is indicated by 

higher N50 values, higher sequence coverage, lower assembly 

error rates, and lower computational resource consumption (to 

enable assembly of larger genomes). The performance of different 

assembly tools was dependent, to some extent, on the test condi-

tions. Based on the results of our investigation, we propose the 

following guidelines for tool selection. Generally, SSAKE, Edena 

and Euler-sr need higher depths of coverage (~50x) than Velvet, 

ABySS and SOAPdenovo(~30x) to generate higher N50 lengths; 

SOAPdenovo was the fastest of all tools, and ABySS almost al-

ways consumed the least memo ry space. We have developed a 

tentative reference/guidelines for selecting optimal de novo tools 

under varying conditions (Table 7). Specific co mments regarding 

the performance of individual tools under different conditions are 

summarized below. 

Table 7. Recommendations for de novo tool selection under vary-
ing conditions 

Read Property Small Genome Large Genome 

 GC Read 
High 
N50 

High 
SC 

Low 
AER 

High 
N50 

High 
SC 

Low 
AER 

Short Eu, SS 
Ed, AB, 
Ve 

Eu, SO, 
Ed 

Ed, AB, 
Ve Low 

Long SS, SO 

SS 

AB, Ve SO 

SO, Ed 
AB, Ve 

AB, Ve 

Short Eu, SO 
AB, Ve, 
Ed 

SO, Eu 
AB, Ve, 
Ed 

SE 

High 
Long 

SO, Ed, 
AB, Ve 

SS, SO 
AB, Ve SO, Ed 

SO 
AB, Ve 

Short 
SO, SS, 
AB, Ve 

AB, SS, 
Ve, SO 

Low 
Long SO, SS 

AB, SS, 
SO, Ve 

SO, AB, 
Ve 

AB, 
SO, Ve 

Short SO SO 
PE 

High 
Long 

SO, AB, 
Ve 

AB 

AB, Ve, 
SO 

SO, AB, 
Ve 

AB 

AB, Ve, 
SO 

Requirements of assembly performance includes High N50, High Sequence Coverage 

(SC), Low Assembly Error rate (AER). For different requirements, We recommend 

some de novo tools with order of priority according to properties of sequence reads, 

including s ingle-end/paired-end, GC content, read length and sequence length. SE, 

Single end reads; PE, Paired end reads; Eu, Euler-sr; SS, SSAKE; Ed, Edena; AB, 

ABySS; Ve, Velvet; SO, SOAPdenovo. 

SSAKE provided good sequence coverage, and also generated 

good N50 lengths when assembling sequences with low GC con-

tent. On the other hand, SSAKE tended to generate more assembly 

errors and needed more depth of coverage to reach DCAP than 

most of the other tools tested. The time and memory usage of 

SSAKE was also the highest of the tools tested. Our results indi-

cated that assembly of large sequences (e.g. Homo sapiens) was 

not feasible with SSAKE.   

VCAKE produced the shortest N50 lengths in most situations, 

and the sequence coverage by VCAKE was comparable to 

SSAKE. VCAKE also generated many assembly errors, even high-

er than that of SSAKE under certain test conditions. The computa-

tional resources required to run VCAKE were a little less than 

those required for SSAKE. 

In assembling single-end short reads, Euler-sr produced the 

longest N50 values, but it also generated high assembly error rates, 

comparable to that of SSAKE. In addition, sequence coverage of 

Euler-sr was the lowest under most test situations. Euler-sr con-

sumed intermediate computational resources. 

Under most conditions tested, Velvet and ABySS show similar 

assembly performance; they generated similar N50 lengths, their 

DCAPs were relatively low, and they required acceptable compu-

tational resources. Consequently, it is feasible to use these tools for 

assembling large sequences, such as those obtained for Homo sa-
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SOAPdenovo; in paired-end reads assembly of H.sap-3, Vel-

vet could not even finish the assembly. 

• In general, SOAPdenovo and ABySS were more efficient 

than other tools in terms of runtime and memory usage. 

SSAKE consumed the greatest amount of computational re-

sources. 

Table 6. Comparison of runtime and RAM in the computational 
demand test 

   Runtime (s) 

 
Bench.Seq 

(Length: bp) 
E.coli 
(4.6M) 

C.ele 
(20.9M) 

H.sap-2 
(50.3M) 

H.sap-3 
(100.5M) 

SSAKE 2,776 --- --- --- 
VCAKE 1,672 16,742 --- --- 
Euler-sr 1,689 11,961 29,622 --- 
Edena 895 8,450 17,043 --- 
Velvet 205 1,003 2,786 6,098 
ABySS 265 1,300 3,307 6,608 

SE 

SOAPdenovo 62 253 560 1,029 
SSAKE 9,163 --- --- --- 

Euler-sr 1,455 15,068 --- --- 
Velvet 229 1,351 55,581 --- 
ABySS 458 3,081 9,199 21,683 

PE 

SOAPdenovo 78 374 889 2,257 

  RAM (MB) 

 
Bench.Seq 

(Length: bp) 
E.coli 
(4.6M) 

C.ele 
(20.9M) 

H.sap-2 
(50.3M) 

H.sap-3 
(100.5M) 

SSAKE 9,933 --- --- --- 

VCAKE 4,099 17,408 --- --- 
Euler-sr 1,536 7,065 13,312 --- 
Edena 1,741 7,557 30,720 --- 
Velvet 1,229 4,045 9,830 22528 
ABySS 1,126 3,993 8,909 18432 

SE 

SOAPdenovo 935 2,867 8,089 18227 
SSAKE 16,384 --- --- --- 

Euler-sr 1,638 7,578 --- --- 
Velvet 1,331 5,324 30,720 --- 
ABySS 950 4,505 9,830 18,432 

PE 

SOAPdenovo 1,638 5,939 10,342 19,456 

Bench.Seq: Benchmark Sequence; s: second; MB: megabytes; SE: Single-End Reads 

Assembly; PE: Paired-End Reads Assembly. “---” denotes the RAM of computer is 

not enough or runtime is too long (greater than 10 days) to get assembly results. 

In this test, we also analyzed N50 lengths, sequence coverage, 

and assembly error rate. The results were consistent with several 

conclusions in previous sections (Supplemental Table 16). 

4 CONCLUSIONS AND DISCUSSIONS 

This study compared seven publically available and commonly 

used de novo assembly tools: SSAKE, VCAKE, Euler-sr, Edena, 

Velvet, ABySS and SOAPdenovo. These tools are specifically 

designed to assemble large numbers of short reads generated by 

next-generation sequencing platforms. 

In analyzing these tools, stronger performance is indicated by 

higher N50 values, higher sequence coverage, lower assembly 

error rates, and lower computational resource consumption (to 

enable assembly of larger genomes). The performance of different 

assembly tools was dependent, to some extent, on the test condi-

tions. Based on the results of our investigation, we propose the 

following guidelines for tool selection. Generally, SSAKE, Edena 

and Euler-sr need higher depths of coverage (~50x) than Velvet, 

ABySS and SOAPdenovo(~30x) to generate higher N50 lengths; 

SOAPdenovo was the fastest of all tools, and ABySS almost al-

ways consumed the least memo ry space. We have developed a 

tentative reference/guidelines for selecting optimal de novo tools 

under varying conditions (Table 7). Specific co mments regarding 

the performance of individual tools under different conditions are 

summarized below. 

Table 7. Recommendations for de novo tool selection under vary-
ing conditions 

Read Property Small Genome Large Genome 

 GC Read 
High 
N50 

High 
SC 

Low 
AER 

High 
N50 

High 
SC 

Low 
AER 

Short Eu, SS 
Ed, AB, 
Ve 

Eu, SO, 
Ed 

Ed, AB, 
Ve Low 

Long SS, SO 

SS 

AB, Ve SO 

SO, Ed 
AB, Ve 

AB, Ve 

Short Eu, SO 
AB, Ve, 
Ed 

SO, Eu 
AB, Ve, 
Ed 

SE 

High 
Long 

SO, Ed, 
AB, Ve 

SS, SO 
AB, Ve SO, Ed 

SO 
AB, Ve 

Short 
SO, SS, 
AB, Ve 

AB, SS, 
Ve, SO 

Low 
Long SO, SS 

AB, SS, 
SO, Ve 

SO, AB, 
Ve 

AB, 
SO, Ve 

Short SO SO 
PE 

High 
Long 

SO, AB, 
Ve 

AB 

AB, Ve, 
SO 

SO, AB, 
Ve 

AB 

AB, Ve, 
SO 

Requirements of assembly performance includes High N50, High Sequence Coverage 

(SC), Low Assembly Error rate (AER). For different requirements, We recommend 

some de novo tools with order of priority according to properties of sequence reads, 

including s ingle-end/paired-end, GC content, read length and sequence length. SE, 

Single end reads; PE, Paired end reads; Eu, Euler-sr; SS, SSAKE; Ed, Edena; AB, 

ABySS; Ve, Velvet; SO, SOAPdenovo. 

SSAKE provided good sequence coverage, and also generated 

good N50 lengths when assembling sequences with low GC con-

tent. On the other hand, SSAKE tended to generate more assembly 

errors and needed more depth of coverage to reach DCAP than 

most of the other tools tested. The time and memory usage of 

SSAKE was also the highest of the tools tested. Our results indi-

cated that assembly of large sequences (e.g. Homo sapiens) was 

not feasible with SSAKE.   

VCAKE produced the shortest N50 lengths in most situations, 

and the sequence coverage by VCAKE was comparable to 

SSAKE. VCAKE also generated many assembly errors, even high-

er than that of SSAKE under certain test conditions. The computa-

tional resources required to run VCAKE were a little less than 

those required for SSAKE. 

In assembling single-end short reads, Euler-sr produced the 

longest N50 values, but it also generated high assembly error rates, 

comparable to that of SSAKE. In addition, sequence coverage of 

Euler-sr was the lowest under most test situations. Euler-sr con-

sumed intermediate computational resources. 

Under most conditions tested, Velvet and ABySS show similar 

assembly performance; they generated similar N50 lengths, their 

DCAPs were relatively low, and they required acceptable compu-

tational resources. Consequently, it is feasible to use these tools for 

assembling large sequences, such as those obtained for Homo sa-
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Whole	
  genome	
  sequencing	
  

•  De	
  Novo	
  whole	
  genome	
  sequencing	
  
•  Mapping	
  assembly	
  (Reference-­‐guided	
  
assembly)	
  (Resequencing)	
  

	
  



Paired-­‐end	
  sequencing	
  
•  Paired-­‐End	
  sequencing	
  (for	
  Mate-­‐pairs)	
  

–  Sequence	
  two	
  ends	
  of	
  a	
  fragment	
  of	
  known	
  size.	
  

–  Currently	
  fragment	
  length	
  (insert	
  size)	
  can	
  range	
  from	
  200	
  
bps	
  –	
  10,000	
  bps	
  

–  Paired-­‐end	
  sequencing	
  is	
  helpful	
  for	
  assembly	
  and	
  loca*ng	
  
repeat.	
  It	
  also	
  can	
  detect	
  rearrangements,	
  including	
  
inser*ons	
  and	
  dele*ons	
  (indels)	
  and	
  inversions.	
  	
  

–  As	
  paired	
  end	
  reads	
  are	
  more	
  likely	
  to	
  align	
  to	
  a	
  reference,	
  
the	
  quality	
  of	
  the	
  en*re	
  data	
  set	
  improves	
  



Paired-­‐end	
  sequencing	
  
by	
  Illumina	
  

Both	
  the	
  forward	
  and	
  reverse	
  
template	
  strands	
  of	
  each	
  
cluster	
  	
  can	
  be	
  sequenced.	
  

A	
  simple	
  modifica*on	
  to	
  the	
  
standard	
  single-­‐read	
  DNA	
  
library	
  prepara*on.	
  	
  

Solid-­‐phase	
  amplifica*on	
  and	
  
Cyclic	
  reversible	
  termina*on	
  	
  	
  



Mate-­‐pair	
  libraries	
  

Berglund	
  et	
  al.	
  Inves/ga/ve	
  Gene/cs	
  2011	
  2:23	
  

adaptor	
  

Use	
  computer	
  sogware	
  to	
  
remove	
  adaptor	
  sequences	
  

bio/nylated	
  
Circulariza*on	
  



De	
  Novo	
  sequencing	
  

•  New	
  species/strains	
  
•  Challenge	
  of	
  assembly	
  with	
  short	
  reads	
  

–  8x	
  coverage	
  of	
  3	
  GB	
  genome	
  =	
  750	
  million	
  fragments	
  
–  Exponen*al	
  problem	
  for	
  all-­‐vs-­‐all	
  algorithm	
  (overlap)	
  

•  Big	
  problem	
  with	
  repeats	
  
•  Assemble	
  con*gs,	
  fill	
  gaps	
  
•  Paired-­‐end	
  reads	
  are	
  essen*al	
  



Shotgun	
  Sequencing	
  

•  Breaking	
  the	
  genome	
  into	
  a	
  collec*on	
  of	
  small	
  
DNA	
  fragments	
  	
  

•  Sequencing.	
  	
  
•  Recons*tute	
  the	
  genome.	
  

Shotgun	
  sequencing	
  
is	
  a	
  laboratory	
  
technique	
  for	
  
determining	
  the	
  DNA	
  
sequence	
  of	
  an	
  
organism's	
  genome.	
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Shotgun sequencing 
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Typical contig coverage 
 

1 
2 
3 
4 
5 
6 C

ov
er

ag
e 

Contig 

Reads 

Imagine raindrops on a sidewalk:  
It can be modeled by Poisson distribution 

L = read length 
G = genome size 
N = number of reads 
c = coverage= (NL / G) Average	
  coverage	
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Lander-Waterman statistics 

L = read length 
G = genome size 
N = number of reads 
c = coverage =(NL / G) 
T = minimum detectable overlap 
σ = 1 – T/L 
 
E(# of islands) = Ne-cσ  
E(island size) = L((ecσ – 1) / c + 1 – σ) 
contig = island with 2 or more reads 

Smith-­‐Waterman	
  algorithm	
  	
  for	
  sequence	
  comparison	
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Example 

c N #islands #contigs bases not in 
any read 

bases not in 
contigs 

1 1,667 655 614 698 367,806 

3 5,000 304 250 121 49,787 

5 8,334 78 57 20 6,735 

8 13,334 7 5 1 335 

Genome size: 1 Mbp   Read Length: 600 



Experimental data 
X 

coverage # ctgs % > 2X avg ctg size (L-W) max ctg size # ORFs 

1 284 54 1,234 (1,138) 3,337 526 

3 597 67 1,794 (4,429) 9,589 1,092 

5 548 79 2,495 (21,791) 17,977 1,398 

8 495 85 3,294 (302,545) 64,307 1,762 

complete 1 100 1.26 M 1.26 M 1,329 

Numbers based on artificially chopping up the genome of 
Wolbachia pipientis dMel 



Errors	
  in	
  Lander-­‐Waterman	
  Es*mate	
  

Lander-­‐Waterman	
  has	
  errors:	
  

• 	
  repeats	
  

• 	
  GC/AT	
  rich	
  regions	
  
• 	
  other	
  low	
  complexity	
  regions	
  

• 	
  cloning	
  biases	
  in	
  shotgun	
  libraries	
  



Expected average contig length for a range of different read lengths and coverage values.  

Schatz M C et al. Genome Res. 2010;20:1165-1173 Copyright © 2010 by Cold Spring Harbor Laboratory Press 

Read	
  length	
  

Dog:	
  2.5	
  billion	
  bp	
  
Panda:	
  3	
  billion	
  bp	
  



Schatz M C et al. Genome Res. 2010;20:1165-1173 



One	
  more	
  example	
  

For	
  yeast	
  12Mbp	
  

• 	
  read	
  length:	
  200-­‐400	
  bp	
  

• 	
  coverage:	
  50X	
  	
  	
  	
  (how	
  many	
  reads	
  do	
  we	
  

need?)	
  

• 	
  paired-­‐end	
  read	
  insert	
  size:	
  8kb	
  (beYer	
  to	
  

make	
  mul*ple	
  libraries	
  with	
  different	
  insert	
  

sizes.)	
  



Assembly Pipeline 
Preprocess 
& estimate 

Assembling	
  

Scaffolding	
  

Repeat 
Removing	
  

•  Velvet:	
  	
  small	
  genomes	
  

•  ABySS:	
  large	
  genome	
  



Scaffolding	
  
•  Scaffolding	
  groups	
  con*gs	
  into	
  subsets	
  
with	
  known	
  order	
  and	
  orienta*on.	
  

•  Nodes	
  are	
  con*gs	
  
•  Directed	
  edge	
  is	
  between	
  two	
  nodes	
  if	
  
they	
  are	
  adjacent	
  in	
  the	
  genome.	
  
	
  

Contig 1 Contig 2	
  



Scaffolding	
  
•  Mate	
  pairs	
  ,	
  if	
  in	
  different	
  con*gs,	
  have	
  a	
  
chance	
  of	
  being	
  neighbors.	
  
	
  



Scaffolding	
  	
  

Align	
  reads	
  from	
  short	
  
insert	
  or	
  long	
  insert	
  
library	
  

Join	
  con*gs	
  using	
  evidence	
  from	
  
paired	
  end	
  data	
  

Con*gs	
  from	
  assembly	
  

Scaffold	
  



Scaffolding	
  Algorithm	
  
•  Find	
  all	
  connected	
  components	
  
•  Find	
  a	
  consistent	
  orienta*on	
  for	
  all	
  nodes	
  in	
  the	
  
graph	
  (all	
  con*gs).	
  	
  
– Nodes	
  (con*gs)	
  have	
  two	
  types	
  of	
  edges	
  

• Same	
  orienta*on	
  
• Different	
  orienta*on	
  

– Make	
  sure	
  linked	
  con*gs	
  have	
  consistent	
  
orienta*on.	
  

– Op*miza*on	
  problem	
  –	
  find	
  the	
  smallest	
  number	
  
of	
  edges	
  to	
  be	
  removed	
  so	
  that	
  	
  all	
  con*gs	
  have	
  
consistent	
  orienta*on.	
  

•  Find	
  the	
  Hamiltonian	
  path	
  again.	
  



Scaffolding	
  sogware	
  

•  Some	
  assembly	
  sogware,	
  such	
  velvet,	
  can	
  do	
  scaffolding	
  
as	
  well.	
  

•  Bambus	
  -­‐	
  hYp://www.cbcb.umd.edu/sogware/bambus	
  
•  SSPACE	
  -­‐	
  
hYp://www.baseclear.com/landingpages/basetools-­‐a-­‐
wide-­‐range-­‐of-­‐bioinforma*cs-­‐solu*ons/sspacev12/	
  

•  GRASS	
  -­‐	
  hYp://code.google.com/p/tud-­‐scaffolding/	
  	
  

	
  



Addi*onal	
  techniques	
  for	
  orienta*on	
  

•  Physical	
  mapping.	
  Using	
  informa*on	
  from	
  Bacterial	
  
Ar*ficial	
  Chromosome	
  (BAC)-­‐based	
  physical	
  maps.	
  
Physical	
  maps	
  are	
  built	
  by	
  clustering	
  together	
  of	
  
BACs	
  sharing	
  por*ons	
  of	
  a	
  DNA	
  “fingerprint,”	
  which	
  
is	
  a	
  paYern	
  of	
  DNA	
  fragments	
  of	
  various	
  sizes.	
  

•  Using	
  markers	
  along	
  a	
  DNA	
  strand	
  as	
  independent	
  
informa*on	
  for	
  scaffolding	
  sogware.	
  Markers	
  are	
  
known	
  sequences	
  of	
  nucleo*des	
  and	
  tags.	
  Markers	
  
are	
  searched	
  in	
  the	
  con*gs.	
  

•  Using	
  large	
  scale	
  maps	
  of	
  landmarks	
  that	
  lie	
  along	
  
the	
  the	
  chromosomal	
  DNA.	
  

	
  



Scaffolding	
  

•  Addi*onal	
  informa*on	
  is	
  also	
  useful:	
  
– Sequences	
  of	
  closely	
  related	
  organisms	
  are	
  also	
  
used	
  as	
  scaffolding	
  informa*on.	
  

	
  	
  	
  	
  Example:	
  aligning	
  scaffolds	
  of	
  a	
  mouse	
  genome	
  to	
  
the	
  human	
  genome	
  



Scaffolding:	
  Issues	
  

•  Errors	
  in	
  length	
  of	
  inserts	
  (affec*ng	
  distances	
  between	
  
clone	
  mates)	
  

•  Physical	
  mapping	
  is	
  error	
  prone.	
  
•  first	
  builds	
  a	
  sequence	
  based	
  on	
  linking	
  informa*on	
  
with	
  high	
  confidence,	
  then	
  factors	
  in	
  linking	
  informa*on	
  
with	
  lower	
  confidence.	
  

	
  



Assembly Pipeline 
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Assembling	
  

Scaffolding	
  

Repeat 
Removing	
  



The variability in repetitiveness among 
species species.  

Schatz M C et al. Genome Res. 2010;20:1165-1173 Copyright © 2010 by Cold Spring Harbor Laboratory Press 

The k-mer uniqueness ratio for five well-known 
organisms and one single-celled human parasite.  

The	
  ra*o	
  ==	
  	
  the	
  
percentage	
  of	
  the	
  
genome	
  that	
  is	
  
covered	
  by	
  unique	
  
sequences	
  of	
  length	
  
k	
  or	
  longer.	
  

The	
  figure	
  shows	
  how	
  
much	
  of	
  each	
  genome	
  
would	
  be	
  covered	
  by	
  k-­‐
mers	
  (reads)	
  that	
  occur	
  
exactly	
  once.	
  



Repeat Control Issues	
  

•  Assembly	
  programs	
  should	
  detect	
  repeats	
  in	
  
the	
  assembly	
  process	
  and	
  not	
  ager.	
  	
  
– Incorrect	
  genome	
  reconstruc*on	
  

•  Assemblers	
  should	
  try	
  to	
  resolve	
  correctly	
  as	
  
many	
  repeats	
  as	
  possible.	
  
– Avoid	
  intensive	
  human	
  labor	
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Repeat Control – When? & How? 
•  pre-assembly: find fragments that belong to repeats 

–  statistically (most existing assemblers) 
–  repeat database (RepeatMasker) 

•  during assembly: detect "tangles" indicative of repeats 
(Pevzner, Tang, Waterman 2001) 

•  post-assembly: find repetitive regions and potential 
mis-assemblies.  
–  Reputer, RepeatMasker 
–  "unhappy" mate-pairs (too close, too far, mis-

oriented) 

sequencing error (2d for positions within a distance d ! l from the
endpoint of the reads). A greedy approach for the Error Correction
Problem is to look for error corrections in the reads that reduce the
size of Sl by 2l (or 2d for positions close to the endpoints). This
simple procedure already eliminates 86.5% of the errors in se-
quencing reads. EULER uses a more involved approach that elimi-
nates 97.7% of sequencing errors and transforms the original
sequencing data with 4.8 errors per read on average into almost
error-free data with 0.11 errors per read on average (22).

A word of caution is in place. Our error-correction procedure is
not perfect while deciding which nucleotide, among, let us say, A or
T is correct in a given l-tuple within a read. If the correct nucleotide
is A, but T is also present in some reads covering the same region,
the error-correction procedure may assign T instead of A to all
reads, i.e., to introduce an error rather than to correct it. Because
our algorithm sometimes introduces errors, data corruption is
probably a more appropriate name for this approach! Introducing
an error in a read is not such a bad thing, as long as the errors from
overlapping reads covering the same position are consistent (i.e.,
they correspond to a single mutation in a genome). An important
insight is that, at this stage of the algorithm, we do not care much
whether we correct or introduce errors in the sequencing reads.
From an algorithmic perspective, introducing a consistent error that
simply corresponds to changing a nucleotide in a final assembly is
not a big deal. It is much more important to make sure that we
eliminate a competition between A and T at this stage, thus
reducing the complexity of the de Bruijn graph. In this way, we
eliminate false edges in our graph and deal with this problem later:
the correct nucleotides are easily reconstructed either by a majority
rule or by a variation of the Churchill–Waterman algorithm (23).
For the NM sequencing project, orphan elimination corrects
234,410 errors and introduces 1,452 errors.

Eulerian Superpaths
Given a set of reads S " {s1, . . ., sn}, define the de Bruijn graph
G(Sl) with vertex set Sl#1 (the set of all (l # 1)-tuples from S) as
follows. An (l # 1)-tuple v ! Sl#1 is joined by a directed edge with
an (l # 1)-tuple w ! Sl#1, if Sl contains an l-tuple for which the first
l # 1 nucleotides coincide with v and the last l # 1 nucleotides
coincide with w. Each l-tuple from Sl corresponds to an edge in G.
If S contains the only sequence s1, then this sequence corresponds
to a path visiting each edge of the de Bruijn graph, a Chinese
Postman path (20). The Chinese Postman Problem is closely related
to the problem of finding a path visiting every edge of a graph
exactly once, an Eulerian Path Problem (24). One can transform the
Chinese Postman Problem into the Eulerian Path Problem by
introducing multiplicities of edges in the de Bruijn graph. For
example, one can substitute every edge in the de Bruijn graph by
k parallel edges, where k is the number of times the edge is used in
the Chinese Postman path. If S contains the only sequence s1, this
operation creates k ‘‘parallel’’ edges for every l-tuple repeating k
times in s1 (23). Finding Eulerian paths is a well known problem that
can be efficiently solved in linear time. We assume that S contains
a complement of every read and that the de Bruijn graph can be
partitioned into two subgraphs (the ‘‘canonical’’ one and its reverse
complement).

With real data, the errors hide the correct path among many
erroneous edges. The graph corresponding to the error-free data
from the NM project has 4,039,248 vertices (roughly twice the
length of the genome), whereas the graph corresponding to real
sequencing reads has 9,474,411 vertices (for 20-tuples). After the
error-correction procedure, this number is reduced to 4,081,857.

A vertex v is called a source if indegree(v) " 0, a sink if
outdegree(v) " 0, and a branching vertex if indegree(v)!
outdegree(v) $ 1. For the NM genome, the de Bruijn graph has
502,843 branching vertices for original reads (for l-tuple size 20).
Error corrections simplify this graph and lead to a graph with 382
sources and sinks and 12,175 branching vertices. Because the de

Bruijn graph gets very complicated even in the error-free case,
taking into account the information about which l-tuples belong to
the same reads (that was lost after the construction of the de Bruijn
graph) helps us to untangle this graph.

A path v1 . . . vn in the de Bruijn graph is called a repeat if
indegree(v1) $ 1, outdegree(vn) $ 1, and indegree (v1) "
outdegree(vi) " 1 for 1 ! i ! n # 1 (Fig. 3). Edges entering the
vertex v1 are called entrances into a repeat, whereas edges
leaving the vertex vn are called exits from a repeat. An Eulerian
path visits a repeat a few times, and every such visit defines a
pairing between an entrance and an exit. Repeats may create
problems in fragment assembly, because there are a few en-
trances in a repeat and a few exits from a repeat, but it is not clear
which exit is visited after which entrance in the Eulerian path. A
read-path covers a repeat if it contains an entrance into and an
exit from this repeat. Every covering read-path reveals some
information about the correct pairings between entrances and
exits. A repeat is called a tangle if there is no read-path
containing this repeat (Fig. 3). Tangles create problems in
fragment assembly, because pairings of entrances and exits in a
tangle cannot be resolved via the analysis of read-paths. To
address this issue, we formulate the following generalization of
the Eulerian Path Problem:

Eulerian Superpath Problem. Given an Eulerian graph and a
collection of paths in this graph, find an Eulerian path in this
graph that contains all these paths as subpaths.

To solve the Eulerian Superpath Problem, we transform both
the graph G and the system of paths ! in this graph into a new
graph G1 with a new system of paths !1. Such transformation is
called equivalent if there exists a one-to-one correspondence
between Eulerian superpaths in (", !) and ("1, !1). Our goal is
to make a series of equivalent transformations

%", !& 3 %"1 , !1& 3 · · · 3 %"k , !k&

that lead to a system of paths !k, with every path being a single
edge. Because all transformations on the way from (", !) to
("k, !k) are equivalent, every solution of the Eulerian Path
Problem in ("k, !k) provides a solution of the Eulerian Super-
path Problem in (", !).

Below, we describe a simple equivalent transformation that solves
the Eulerian Superpath Problem in the case when the graph G has
no multiple edges. Let x " (vin, vmid) and y " (vmid, vout) be two
consecutive edges in graph G, and let !x,y be a collection of all paths
from ! that include both these edges as a subpath. Informally,
x,y-detachment bypasses the edges x and y via a new edge z and
directs all paths in !x,y through z, thus simplifying the graph.
However, this transformation affects other paths and needs to be
defined carefully. Define !3x as a collection of paths from ! that
end with x and !y3 as a collection of paths from ! that start with
y. The x, y-detachment is a transformation that adds a new edge z "
(vin, vout) and deletes the edges x and y from G (Fig. 4a). This
detachment alters the system of paths ! as follows: (i) substitute z

Fig. 3. A repeat v1 . . . vn and a system of paths overlapping with this repeat.
The uppermost path contains the repeat and defines the correct pairing
between the corresponding entrance and exit. If this path were not present,
the repeat v1 . . . vn would become a tangle.

Pevzner et al. PNAS ! August 14, 2001 ! vol. 98 ! no. 17 ! 9751
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Detec*ng	
  repeats	
  
pre-assembly: 	
  

•  Sta*s*cal	
  methods	
  
– Assemblers assume that reads are sampled 

uniformly at random. 
– Significant deviations from average coverage 

flagged as repeats. 
–  frequent k-mers are ignored 
– “arrival” rate of reads in contigs compared 

with theoretical value.  
(e.g., 800 bp reads & 8x coverage - reads "arrive" every 100 bp) 
 



Detec*ng	
  repeats	
  
during assembly	
  

•  Example:	
  In	
  Euler	
  assembly	
  program	
  
– Finds	
  repeats	
  by	
  complex	
  parts	
  of	
  the	
  graph	
  
constructed	
  during	
  the	
  assembly	
  process.	
  

– Researchers	
  look	
  into	
  these	
  complex	
  areas	
  to	
  try	
  
and	
  resolve	
  repeats.	
  

– Assemblers	
  can	
  use	
  clone	
  mate	
  informa*on	
  to	
  
find	
  incorrect	
  assemblies.	
  This	
  is	
  based	
  on	
  finding	
  
clone-­‐mate	
  pairs	
  too	
  close	
  or	
  too	
  far	
  from	
  one	
  
another.	
  (“unhappy”	
  mate-­‐pairs)	
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Detec*ng	
  repeats	
  
post-assembly: Mis-assembled repeats 

 a b c 

a c 
b 

 

a b c d 
I II III 

I 

II 

III 
a 

b c 

d 

b c 

 

 

a b d c e f 

I II III IV 
 

I III II IV 

a d b e c f 

a 

collapsed tandem excision 

rearrangement 
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Repeat resolution 
•  Assemblers deduce that areas covered by a large 

number of reads may show an over-collapsed 

repeat. 

•  Problems with this - samples are not uniformly 

distributed (for example, non-random libraries and 

poor clonability regions). leads to false positives. 

•  Repeats with low copy number are missed - leads 

to false negatives. 



Repeat resolution 
•  Techniques	
  for	
  repairing	
  sequencing	
  errors	
  during	
  repeat	
  

resolu*on	
  
– find	
  clusters	
  of	
  reads	
  where	
  the	
  clusters	
  share	
  
differences.	
  	
  

•  For	
  example,	
  four	
  reads	
  contain	
  an	
  A	
  ,	
  four	
  contain	
  a	
  B.	
  
it	
  is	
  likely	
  that	
  the	
  first	
  four	
  reads	
  are	
  from	
  one	
  copy	
  
and	
  the	
  last	
  four	
  from	
  a	
  different	
  one.	
  

– Drawbacks	
  are	
  if	
  certain	
  areas	
  of	
  the	
  sequence	
  
have	
  low	
  coverage.	
  	
  

– Difficult	
  to	
  separate	
  from	
  true	
  polymorphism	
  
	
  



Discussion:	
  
Virtual	
  genome	
  assembly	
  

•  Plant	
  mitochondrion	
  genome	
  500,000	
  bp	
  	
  	
  	
  DNA	
  	
  	
  	
  	
  circular	
  
•  How	
  can	
  you	
  get	
  mitochondria	
  DNA?	
  What	
  problems	
  do	
  we	
  need	
  to	
  concern	
  for	
  

this	
  step?	
  
•  For	
  DNA	
  fragmen*ng,	
  what	
  sizes	
  of	
  DNA	
  fragments	
  will	
  you	
  use?	
  A.	
  1Kbp,	
  B.	
  5kbp,	
  

C.	
  both	
  
•  Pair-­‐ended	
  or	
  single	
  ended?	
  
•  What	
  depth	
  do	
  you	
  sequence?	
  how	
  many	
  lanes	
  do	
  you	
  need	
  if	
  you	
  use	
  illumina	
  

hiseq	
  2000?	
  or	
  how	
  many	
  reads	
  do	
  you	
  need	
  to	
  get?	
  	
  
•  Which	
  assembler	
  will	
  you	
  use?	
  Why?	
  
•  What	
  computer	
  do	
  you	
  used	
  to	
  do	
  assemble?	
  A.	
  4GB	
  laptop	
  B.	
  50GB	
  worksta*on	
  

C.	
  computer	
  cluster	
  in	
  HCC	
  
•  According	
  to	
  your	
  es*mate,	
  how	
  long	
  does	
  it	
  take	
  for	
  assemble?	
  A.	
  30	
  minutes	
  B.2	
  

hours	
  C.	
  12	
  hours	
  D.	
  4	
  days	
  
•  What	
  sogware	
  do	
  you	
  used	
  to	
  do	
  scaffold?	
  how	
  long	
  does	
  it	
  take?	
  	
  
•  What	
  is	
  longest	
  gap	
  in	
  one	
  scaffold?	
  How	
  do	
  you	
  fill	
  gaps?	
  
•  How	
  do	
  you	
  determine	
  if	
  your	
  assembled	
  genome	
  is	
  good	
  enough?	
  
•  how	
  do	
  you	
  annotate	
  genes?	
  	
  

On	
  Thursday,	
  Jan	
  30.	
  


