
Next-‐genera*on	 sequencing	

Lecture	 5	
	

Main	 algorithm	 used:	
•  Greedy	 algorithms	
•  Overlap	 Layout	 Consensus	
•  De	 brujin	 graphs	

Greedy Assembly

•  Build a rough map of
fragment overlaps
(pairwise alignment)

•  Pick the largest scoring
overlap

•  Merge the two fragments
•  Repeat until no more

merges can be done

Greedy Assembly
•  Advantages:	

–  Simple	 and	 easy	 to	 implement	 	
–  effec*ve	

•  Disadvantages	
–  Since	 local	 informa*on	 is	 considered	 at	 each	 step,	 the	
assembler	 can	 be	 easily	 confused	 by	 complex	 repeats,	
leading	 to	 mis-‐assemblies.	

–  Local	 approach.	 Easy	 to	 be	 trapped	 into	 a	 local	
op*mal	 solu*on	 (local	 minimum).	

–  Early	 mistakes	 create	 bad	 assemblies.	

R1	 R2	

R5	

R3	 R4	

Try	 to	 find	 the	 Hamiltonian	 path:	
•  A	 path	 in	 the	 graph	 contains	 each	 node	 exactly	 once.	
•  Following	 the	 Hamiltonian	 path,	 combine	 the	
overlapping	 sequences	 in	 the	 nodes	 into	 the	
sequence	 of	 the	 genome	

•  Computa*onally	 expensive	 (NP-‐hard	 problem)	

CGTAGTGGCAT

ATTCACGTAG

Overlap-layout-consensus
•  BeYer	 than	 Greedy	 algorithm.	 It	 can	 generate	 correct	

order	 of	 con*gs	 that	 the	 Greedy	 algorithms	 may	 have	
errors.	

•  No	 efficient	 algorithm	 to	 find	 the	 Hamiltonian	 path	
•  Short	 fragment	 length	 =	 very	 small	 overlap	 therefore	

many	 false	 overlaps.	
•  Overlap	 discovery	 is	 sensi*ve	 to	 minimum	 overlap	 length	

and	 minimum	 percent	 iden*ty	 required	 for	 an	 overlap.	
•  Overlap	 discovery	 is	 also	 *me	 consuming.	
•  Large	 number	 of	 reads	 +	 short	 overlap	 +	 higher	 error	 are	

challenging	 for	 the	 overlap	 -‐	 layout	 -‐	 consensus	 approach	
•  Can’t	 assemble	 repeat	 longer	 than	 read	 length	
•  It	 is	 mostly	 used	 with	 Sanger	 or	 454	 data.	

Main	 algorithm	 used:	
•  Greedy	 algorithms	
•  Overlap	 Layout	 Consensus	
•  De	 bruijn	 graphs	

De	 Bruijn	 Graphs	

Flicek,	 Nature	 Methods,	 2009	

1.  Get	 k-‐bp	 (k-‐mer)	 subsequences	 for	
reads.	 	

2.  k-‐mers	 in	 the	 reads	 are	 collected	
into	 nodes	 and	 the	 coverage	 at	
each	 node	 is	 recorded.	 Link	 two	 k-‐
mer	 nodes	 if	 they	 have	 overlap.	

3.  the	 graph	 is	 simplified	 to	 combine	
nodes	 that	 are	 associated	 with	 the	
con*nuous	 linear	 stretches	 into	
single,	 larger	 nodes	 of	 various	 k-‐
mer	 sizes.	 	

4.  error	 correc*on	 removes	 the	 *ps	
and	 bubbles	 that	 result	 from	
sequencing	 errors	 and	 creates	 a	
final	 graph	 structure	 that	
accurately	 and	 completely	
describes	 in	 the	 original	 genome	
sequence.	

Differences between an overlap graph and a de Bruijn graph for assembly.

Schatz M C et al. Genome Res. 2010;20:1165-1173

Copyright © 2010 by Cold Spring Harbor Laboratory Press

De	 Bruijn	 Graphs	 example	

“It	 was	 the	 best	 of	 *mes,	 it	 was	 the	 worst	 of	 *mes,	 it	 was	 the	 age	 of	

wisdom,	 it	 was	 the	 age	 of	 foolishness,	 it	 was	 the	 epoch	 of	 belief,	 it	 was	

the	 epoch	 of	 incredulity,....	 “	

Dickens,	 Charles.	 A	 Tale	 of	 Two	 Ci*es.	 1859.	 London:	 Chapman	 Hall	

Velvet	 example	 courtesy	 of	 J.	 Leipzig	 2010	

•  For	 the	 purposes	 of	 illustra*on,	 we	 can	 use	 human	 readable	 text	
to	 explore	 how	 assemblies	 work.	

•  This	 is	 an	 example	 taken	 from	 Leipzig	 et	 al	 2001.	
•  In	 it	 he	 uses	 the	 opening	 paragraph	 from	 Dickens’	 “A	 tale	 of	 two	

ci*es”.	
•  It	 is	 an	 appropriate	 example	 because	 like	 genomes,	 it	 contains	

strings	 that	 are	 repeat	 over	 and	 over.	

De	 Bruijn	 Graphs	 example	
itwasthebestogimesitwastheworstogimesitwastheageofwisdomitwastheageoffoolishness…	

Generate	 	 random	 ‘reads’	 How	 do	 we	 assemble?	

Tradi*onal	 all-‐vs-‐all	 comparisons	 of	 datasets	 this	 size	 require	 immense	
computa*onal	 resources.	
	
De	 Bruijn	 solu*on:	 Construct	 a	 graph	 efficiently	 	

fincreduli	 geoffoolis	 Itwasthebe	 Itwasthebe	 geofwisdom	 itwastheep	 epochofinc	 *mesitwas	 stheepocho	 nessitwast	 wastheageo	 theepochof	 stheepocho	 hofincredu	
estogimes	 eoffoolish	 lishnessit	 hokeliefi	 pochofincr	 itwasthewo	 twastheage	 togimesit	 domitwasth	 ochokelie	 eepochoke	 eepochoke	 astheworst	 chofincred	 theageofwi	
iefitwasth	 ssitwasthe	 astheepoch	 efitwasthe	 wisdomitwa	 ageoffooli	 twasthewor	 ochokelie	 sdomitwast	 sitwasthea	 eepochoke	 ffoolishne	 eofwisdomi	 hebestogi	
stheageoff	 twastheepo	 eworstogi	 stogimesi	 theepochof	 esitwasthe	 heepochofi	 theepochof	 sdomitwast	 astheworst	 rstogimes	 worstogim	 stheepocho	 geoffoolis	
ffoolishne	 *mesitwas	 lishnessit	 stheageoff	 eworstogi	 orstogime	 fwisdomitw	 wastheageo	 heageofwis	 incredulit	 ishnessitw	 twastheepo	 wasthewors	 astheepoch	
heworstog	 okeliefit	 wastheageo	 heepochofi	 pochofincr	 heageofwis	 stheageofw	 fincreduli	 astheageof	 wisdomitwa	 wastheageo	 astheepoch	 olishnessi	 astheepoch	
itwastheep	 twastheage	 wisdomitwa	 keliefitw	 bestogime	 epochokel	 theepochof	 sthebestof	 lishnessit	 hokeliefi	 Itwasthebe	 ishnessitw	 sitwasthew	 ageofwisdo	
twastheage	 esitwasthe	 twastheage	 shnessitwa	 fincreduli	 keliefitw	 theepochof	 mesitwasth	 domitwasth	 ochokelie	 heageofwis	 ogimesitw	 stheepocho	 bestogime	
twastheage	 foolishnes	 gimesitwa	 thebestog	 itwastheag	 theepochof	 itwasthewo	 okeliefit	 bestogime	 mitwasthea	 imesitwast	 *mesitwas	 orstogime	 estogimes	
twasthebes	 stogimesi	 sdomitwast	 wisdomitwa	 theworstof	 astheworst	 sitwasthew	 theageoffo	 eepochoke	 theageofwi	 foolishnes	 incredulit	 okeliefit	 chofincred	 beliefitwa	
beliefitwa	 wisdomitwa	 eageoffool	 eoffoolish	 itwastheag	 mesitwasth	 epochofinc	 ssitwasthe	 itwastheep	 astheageof	 stheageoff	 sitwasthee	 thebestog	 oolishness	
heepochok	 ochokelie	 wastheepoc	 bestogime	 mesitwasth	 ebestogim	 pochofincr	

…etc.	 to	 10’s	 of	 millions	 of	 reads	

De	 Bruijn	 Graphs	
Step	 1:	 “Kmerize”	 	 the	 data	

Reads:	 theageofwi	

age	
geo	
eof	
ofw	
fwi	

sthebestof	

sth	
the	
heb	
ebe	
bes	
est	
sto	
tof	

astheageof	

ast	
sth	
the	
hea	
eag	
age	
geo	
eof	

worstogim	

wor	
ors	
rst	
sto	
tof	
og	
gi	
*m	

imesitwast	

ime	
mes	
esi	
sit	
itw	
twa	
was	
ast	

…..etc	 for	 all	 reads	 in	 the	 dataset	

Kmers	 :	
(k=3)	

the	
hea	
eag	

De	 Bruijn	 Graphs	

age	 geo	 eof	 ofw	 fwi	 hea	 eag	 the	
sth	 the	

heb	 ebe	 bes	 est	 sto	 tof	

ast	 sth	
the	 hea	 eag	 age	 geo	 eof	

Look	 for	 k-‐1	 overlaps:	 given	 by	 the	 reads	

wor	 ors	 rst	
sto	 tof	

og	 gi	 *m	

ime	 mes	

esi	
sit	 itw	 twa	

was	

ast	

…..etc	 for	 all	 ‘kmers’	 in	 the	 dataset	

Step2	 Build	 the	 graph	

De	 Bruijn	 Graphs	
	 step3:	 simplify	 the	 graph	

•  The	 final	 step	 is	 to	 remove	 redundancy,	 result	 in	 the	 final	 De	 Bruijn	 Graph	
representa*on	 of	 our	 genome.	

•  the	 overlaps	 between	 reads	 are	 implicit	 in	 the	 graph,	 so	 all	 the	 millions	 v.s	
millions	 of	 comparisons	 are	 not	 required.	

•  On	 the	 downside,	 informa*on	 is	 lost	 as	 repe**ve	 sequences	 are	 “collapsed”	
into	 a	 single	 representa*on.	

De	 Bruijn	 Graphs	
step4:	 Create	 con*gs	

Find	 the	 Hamiltonian	 path	 or	 cycle	 in	 the	 De	 Bruijn	
graph.	 Each	 path	 in	 the	 simplified	 De	 Bruijn	 graph	 is	
a	 Hamiltonian	 path.	 A	 Hamiltonian	 path	 	 is	 a	 con*g.	 	

Common Problems
•  Spurs:	 dead-‐end	 sequences	
•  Bubbles:	 divergent	 paths	 that	 then	 converge	
•  Frayed	 rope:	 convergent	 then	 divergent	 paths	
•  Cycles:	 paths	 convergent	 upon	 themselves	 E88'9B75)$*4B7'98)

W*3F$ *3F3$

3F3*$

3F3W$

F3*W$

F3W3$

3*WF$ *WFF$

Spurs

W*3F$ *3F3$

3F3*$

3F3W$

F3*W$

F3W3$

3*WF$ *WFF$

Bubbles

3W3F$ W3FF$

WFFW$

3FFW$

FFW*$

W3F3$

*3F3$

3F3*$ F3*W$ 3*WF$ *WFF$
Frayed

Rope
WFFW$

3*3F$

FW3F$ FFW*$

FFW3$

Cycles W3F*$

3F*W$

*W3F$

F*W3$

Resolve	 graph	 complexity	

Strengths	 and	 problems	 	
of	 De	 Bruijn	 approach	

Strengths:	
•  No	 need	 to	 calculate	 the	 overlaps	
•  Size	 of	 the	 final	 graph	 is	 propor*onal	 to	 the	 genome	 size	
•  successfully	 for	 very	 short	 reads	 (<50bp)	

Problems:	
•  The	 main	 drawback	 to	 the	 de	 Bruijn	 approach	 is	 the	 loss	

of	 informa*on	 caused	 by	 decomposing	 a	 read	 into	 a	
path	 of	 k-‐mers.	

•  require	 an	 enormous	 amount	 of	 computer	 space	
•  Can	 only	 resolve	 k	 long	 repeat	
•  Loose	 connec*vity	 when	 create	 the	 con*gs	
	

Strengths	 and	 problems	 	
of	 De	 Bruijn	 approach	

Pros:	 correctly	 links	 two	 sequences	
without	 having	 to	 compute	 overlap	
score.	 (above	 case)	
Cons:	 two	 sequences	 are	 linked	
without	 any	 real	 overlap.	 (leg	 case)	

Schlebusch,	 2012	

De	 Bruijn	 Assemblers	
•  Euler:	 hYp://nbcr.sdsc.edu/euler/	 ,	 Sanger,	 454,	 2001-‐2006	

•  Velvet:	 hYp://www.ebi.ac.uk/~zerbino/velvet/,	 small	 genomes,	
Sanger,	 454,	 Solexa,	 SOLiD,	 2007-‐2009	 (very	 good	 for	 small	 genome)	

•  ABySS:	 hYp://www.bcgsc.ca/plarorm/bioinfo/sogware/abyss,	 large	
genome,	 Solexa,	 SOLiD,	 2008-‐2011	 (for	 very	 large	 genome)	

•  SOAP-‐denovo:	 hYp://soap.genomics.org.cn/soapdenovo.html,	
Solexa,	 2009	

•  ALLPATH-‐LG:	
hYp://www.broadins*tute.org/sogware/allpaths-‐lg/blog/,	 	 large	
genome,	 Solexa,	 SOLiD,	 2011	 (very	 good	 performance	 bu	 require	 2	
lib	 of	 different	 insert	 sizes)	

•  IDBA-‐UD:	 hYp://i.cs.hku.hk/~alse/hkubrg/projects/idba_ud/,	 Sanger,
454,Solexa,	 2010	 	 (metagenomic,	 doesn’t	 rely	 on	 coverage	 to	 remove	
error)	

Comparison	 of	 Assembly	 tools	

Miller,	 genomics,	 2010,	 95(6):315-‐27	

sink node. Each assembler searches the graph but each constrains its
searches for reasons of scale. A search in CABOG's overlap graph
follows only one outward edge per node. Searches in AllPaths and
Velvet examine local regions of the K-mer graph that are anchored by
large contigs and populated by direct and transitive paired-end
linkage. Euler and ABySS seem to rely on branch-and-bound search
algorithms.

Common to most assemblers, a core set of features is apparent:

• Error detection and correction based on sequence composition of
the reads.

• Graph construction to represent reads and their shared sequence.
• Reduction of simple non-intersecting paths to single nodes in the
graph.

• Removal of error-induced paths. These are recognized as spurs or
bubbles.

• Collapse of polymorphism-induced complexity. This is recognized
as bubbles.

• Simplification of tangles using information outside the graph.
Individual reads or paired-end reads act as constraints on path
distance and outcome.

• Conversion of reduced paths to contigs and scaffolds.
• Reduction of alignments to a consensus sequence.

OLC and DBG are two robust approaches to assembly. Both rely to
some extent on a set of overlaps between the input reads. Both
represent the overlaps in a directed graph. Their different graph
representations are similar if not equivalent [66]. The OLC approach

Table 1
Feature comparison between de novo assemblers for whole-genome shotgun data from next-generation sequencing platforms. OLC refers to the overlap/layout/consensus
architecture. DBG refers to the de Bruijn graph architecture. The table is based on the literature cited in the text. It may not reflect the current state of each software package.

Algorithm Feature Greedy Assemblers OLC Assemblers DBG Assemblers

Modeled features of reads

Base substitutions Euler, AllPaths, SOAP
Homopolymer miscount CABOG
Concentrated error in 3′ end Euler
Flow space Newbler
Color space Shorty Velvet

Removal of erroneous reads

Based on K-mer frequencies Euler, Velvet, AllPaths
Based on K-mer freq and QV AllPaths
For multiple values of K AllPaths
By alignment to other reads CABOG
By alignment and QV SHARCGS

Correction of erroneous base calls

Based on K-mer frequencies Euler, SOAP
Based on Kmer freq and QV AllPaths
Based on alignments CABOG

Approaches to graph construction

Implicit SSAKE, SHARCGS, VCAKE
Reads as graph nodes CABOG, Newbler, Edena
K-mers as graph nodes Euler, Velvet, ABySS, SOAP
Simple paths as graph nodes AllPaths
Multiple values of K Euler
Multiple overlap stringencies SHARCGS

Approaches to graph reduction

Filter overlaps CABOG
Greedy contig extension SSAKE, SHARCGS, VCAKE
Collapse simple paths CABOG, Newbler Euler, Velvet, SOAP
Erosion of spurs CABOG, Edena Euler, Velvet, AllPaths, SOAP
Transitive overlap reduction Edena
Bubble smoothing Edena Euler, Velvet, SOAP
Bubble detection AllPaths
Reads separate tangled paths Euler, SOAP
Break at low coverage Velvet, SOAP
Break at high coverage CABOG Euler
High coverage indicates repeat CABOG Velvet
Special use of long reads Shorty Velvet

Graph partitions

Partition by K-mers ABySS
Partition by scaffolds AllPaths

Uses for mate pairs

Constrain path searches Euler, Velvet, AllPaths
Guide path selection Euler, Allpaths
Detect misassembled contigs CABOG, Shorty
Merge contigs or fill gaps CABOG, Shorty Velvet, ABySS, SOAP
Transitive link reduction CABOG SOAP
Detect, avoid repeat contigs CABOG Velvet, SOAP
Create scaffolds CABOG, Shorty Euler, Velvet, AllPaths, SOAP

324 J.R. Miller et al. / Genomics 95 (2010) 315–327

sink node. Each assembler searches the graph but each constrains its
searches for reasons of scale. A search in CABOG's overlap graph
follows only one outward edge per node. Searches in AllPaths and
Velvet examine local regions of the K-mer graph that are anchored by
large contigs and populated by direct and transitive paired-end
linkage. Euler and ABySS seem to rely on branch-and-bound search
algorithms.

Common to most assemblers, a core set of features is apparent:

• Error detection and correction based on sequence composition of
the reads.

• Graph construction to represent reads and their shared sequence.
• Reduction of simple non-intersecting paths to single nodes in the
graph.

• Removal of error-induced paths. These are recognized as spurs or
bubbles.

• Collapse of polymorphism-induced complexity. This is recognized
as bubbles.

• Simplification of tangles using information outside the graph.
Individual reads or paired-end reads act as constraints on path
distance and outcome.

• Conversion of reduced paths to contigs and scaffolds.
• Reduction of alignments to a consensus sequence.

OLC and DBG are two robust approaches to assembly. Both rely to
some extent on a set of overlaps between the input reads. Both
represent the overlaps in a directed graph. Their different graph
representations are similar if not equivalent [66]. The OLC approach

Table 1
Feature comparison between de novo assemblers for whole-genome shotgun data from next-generation sequencing platforms. OLC refers to the overlap/layout/consensus
architecture. DBG refers to the de Bruijn graph architecture. The table is based on the literature cited in the text. It may not reflect the current state of each software package.

Algorithm Feature Greedy Assemblers OLC Assemblers DBG Assemblers

Modeled features of reads

Base substitutions Euler, AllPaths, SOAP
Homopolymer miscount CABOG
Concentrated error in 3′ end Euler
Flow space Newbler
Color space Shorty Velvet

Removal of erroneous reads

Based on K-mer frequencies Euler, Velvet, AllPaths
Based on K-mer freq and QV AllPaths
For multiple values of K AllPaths
By alignment to other reads CABOG
By alignment and QV SHARCGS

Correction of erroneous base calls

Based on K-mer frequencies Euler, SOAP
Based on Kmer freq and QV AllPaths
Based on alignments CABOG

Approaches to graph construction

Implicit SSAKE, SHARCGS, VCAKE
Reads as graph nodes CABOG, Newbler, Edena
K-mers as graph nodes Euler, Velvet, ABySS, SOAP
Simple paths as graph nodes AllPaths
Multiple values of K Euler
Multiple overlap stringencies SHARCGS

Approaches to graph reduction

Filter overlaps CABOG
Greedy contig extension SSAKE, SHARCGS, VCAKE
Collapse simple paths CABOG, Newbler Euler, Velvet, SOAP
Erosion of spurs CABOG, Edena Euler, Velvet, AllPaths, SOAP
Transitive overlap reduction Edena
Bubble smoothing Edena Euler, Velvet, SOAP
Bubble detection AllPaths
Reads separate tangled paths Euler, SOAP
Break at low coverage Velvet, SOAP
Break at high coverage CABOG Euler
High coverage indicates repeat CABOG Velvet
Special use of long reads Shorty Velvet

Graph partitions

Partition by K-mers ABySS
Partition by scaffolds AllPaths

Uses for mate pairs

Constrain path searches Euler, Velvet, AllPaths
Guide path selection Euler, Allpaths
Detect misassembled contigs CABOG, Shorty
Merge contigs or fill gaps CABOG, Shorty Velvet, ABySS, SOAP
Transitive link reduction CABOG SOAP
Detect, avoid repeat contigs CABOG Velvet, SOAP
Create scaffolds CABOG, Shorty Euler, Velvet, AllPaths, SOAP

324 J.R. Miller et al. / Genomics 95 (2010) 315–327

Comparison	 of	 Assembly	 tools	

Miller,	 genomics,	 2010,	 95(6):315-‐27	

sink node. Each assembler searches the graph but each constrains its
searches for reasons of scale. A search in CABOG's overlap graph
follows only one outward edge per node. Searches in AllPaths and
Velvet examine local regions of the K-mer graph that are anchored by
large contigs and populated by direct and transitive paired-end
linkage. Euler and ABySS seem to rely on branch-and-bound search
algorithms.

Common to most assemblers, a core set of features is apparent:

• Error detection and correction based on sequence composition of
the reads.

• Graph construction to represent reads and their shared sequence.
• Reduction of simple non-intersecting paths to single nodes in the
graph.

• Removal of error-induced paths. These are recognized as spurs or
bubbles.

• Collapse of polymorphism-induced complexity. This is recognized
as bubbles.

• Simplification of tangles using information outside the graph.
Individual reads or paired-end reads act as constraints on path
distance and outcome.

• Conversion of reduced paths to contigs and scaffolds.
• Reduction of alignments to a consensus sequence.

OLC and DBG are two robust approaches to assembly. Both rely to
some extent on a set of overlaps between the input reads. Both
represent the overlaps in a directed graph. Their different graph
representations are similar if not equivalent [66]. The OLC approach

Table 1
Feature comparison between de novo assemblers for whole-genome shotgun data from next-generation sequencing platforms. OLC refers to the overlap/layout/consensus
architecture. DBG refers to the de Bruijn graph architecture. The table is based on the literature cited in the text. It may not reflect the current state of each software package.

Algorithm Feature Greedy Assemblers OLC Assemblers DBG Assemblers

Modeled features of reads

Base substitutions Euler, AllPaths, SOAP
Homopolymer miscount CABOG
Concentrated error in 3′ end Euler
Flow space Newbler
Color space Shorty Velvet

Removal of erroneous reads

Based on K-mer frequencies Euler, Velvet, AllPaths
Based on K-mer freq and QV AllPaths
For multiple values of K AllPaths
By alignment to other reads CABOG
By alignment and QV SHARCGS

Correction of erroneous base calls

Based on K-mer frequencies Euler, SOAP
Based on Kmer freq and QV AllPaths
Based on alignments CABOG

Approaches to graph construction

Implicit SSAKE, SHARCGS, VCAKE
Reads as graph nodes CABOG, Newbler, Edena
K-mers as graph nodes Euler, Velvet, ABySS, SOAP
Simple paths as graph nodes AllPaths
Multiple values of K Euler
Multiple overlap stringencies SHARCGS

Approaches to graph reduction

Filter overlaps CABOG
Greedy contig extension SSAKE, SHARCGS, VCAKE
Collapse simple paths CABOG, Newbler Euler, Velvet, SOAP
Erosion of spurs CABOG, Edena Euler, Velvet, AllPaths, SOAP
Transitive overlap reduction Edena
Bubble smoothing Edena Euler, Velvet, SOAP
Bubble detection AllPaths
Reads separate tangled paths Euler, SOAP
Break at low coverage Velvet, SOAP
Break at high coverage CABOG Euler
High coverage indicates repeat CABOG Velvet
Special use of long reads Shorty Velvet

Graph partitions

Partition by K-mers ABySS
Partition by scaffolds AllPaths

Uses for mate pairs

Constrain path searches Euler, Velvet, AllPaths
Guide path selection Euler, Allpaths
Detect misassembled contigs CABOG, Shorty
Merge contigs or fill gaps CABOG, Shorty Velvet, ABySS, SOAP
Transitive link reduction CABOG SOAP
Detect, avoid repeat contigs CABOG Velvet, SOAP
Create scaffolds CABOG, Shorty Euler, Velvet, AllPaths, SOAP

324 J.R. Miller et al. / Genomics 95 (2010) 315–327

Comparison of the effect of various
coverage depths on average contig length

Lin Y et al. Bioinformatics 2011;27:2031-2037

Read	 length	 =35	 Read	 length	 =75	

Couple	 issues	

•  Try	 different	 assemblers	 and	 compare	 their	
results.	

•  Need	 a	 big	 fat	 memory	 computer	 (from	 16GB	
to	 1TB).	

•  Running	 *me	 is	 long:	 from	 several	 hours	 to	
several	 days.	

	

Running	 *me	

6

SOAPdenovo; in paired-end reads assembly of H.sap-3, Vel-

vet could not even finish the assembly.

• In general, SOAPdenovo and ABySS were more efficient

than other tools in terms of runtime and memory usage.

SSAKE consumed the greatest amount of computational re-

sources.

Table 6. Comparison of runtime and RAM in the computational
demand test

 Runtime (s)

Bench.Seq

(Length: bp)
E.coli
(4.6M)

C.ele
(20.9M)

H.sap-2
(50.3M)

H.sap-3
(100.5M)

SSAKE 2,776 --- --- ---
VCAKE 1,672 16,742 --- ---
Euler-sr 1,689 11,961 29,622 ---
Edena 895 8,450 17,043 ---
Velvet 205 1,003 2,786 6,098
ABySS 265 1,300 3,307 6,608

SE

SOAPdenovo 62 253 560 1,029
SSAKE 9,163 --- --- ---

Euler-sr 1,455 15,068 --- ---
Velvet 229 1,351 55,581 ---
ABySS 458 3,081 9,199 21,683

PE

SOAPdenovo 78 374 889 2,257

 RAM (MB)

Bench.Seq

(Length: bp)
E.coli
(4.6M)

C.ele
(20.9M)

H.sap-2
(50.3M)

H.sap-3
(100.5M)

SSAKE 9,933 --- --- ---

VCAKE 4,099 17,408 --- ---
Euler-sr 1,536 7,065 13,312 ---
Edena 1,741 7,557 30,720 ---
Velvet 1,229 4,045 9,830 22528
ABySS 1,126 3,993 8,909 18432

SE

SOAPdenovo 935 2,867 8,089 18227
SSAKE 16,384 --- --- ---

Euler-sr 1,638 7,578 --- ---
Velvet 1,331 5,324 30,720 ---
ABySS 950 4,505 9,830 18,432

PE

SOAPdenovo 1,638 5,939 10,342 19,456

Bench.Seq: Benchmark Sequence; s: second; MB: megabytes; SE: Single-End Reads

Assembly; PE: Paired-End Reads Assembly. “---” denotes the RAM of computer is

not enough or runtime is too long (greater than 10 days) to get assembly results.

In this test, we also analyzed N50 lengths, sequence coverage,

and assembly error rate. The results were consistent with several

conclusions in previous sections (Supplemental Table 16).

4 CONCLUSIONS AND DISCUSSIONS

This study compared seven publically available and commonly

used de novo assembly tools: SSAKE, VCAKE, Euler-sr, Edena,

Velvet, ABySS and SOAPdenovo. These tools are specifically

designed to assemble large numbers of short reads generated by

next-generation sequencing platforms.

In analyzing these tools, stronger performance is indicated by

higher N50 values, higher sequence coverage, lower assembly

error rates, and lower computational resource consumption (to

enable assembly of larger genomes). The performance of different

assembly tools was dependent, to some extent, on the test condi-

tions. Based on the results of our investigation, we propose the

following guidelines for tool selection. Generally, SSAKE, Edena

and Euler-sr need higher depths of coverage (~50x) than Velvet,

ABySS and SOAPdenovo(~30x) to generate higher N50 lengths;

SOAPdenovo was the fastest of all tools, and ABySS almost al-

ways consumed the least memo ry space. We have developed a

tentative reference/guidelines for selecting optimal de novo tools

under varying conditions (Table 7). Specific co mments regarding

the performance of individual tools under different conditions are

summarized below.

Table 7. Recommendations for de novo tool selection under vary-
ing conditions

Read Property Small Genome Large Genome

 GC Read
High
N50

High
SC

Low
AER

High
N50

High
SC

Low
AER

Short Eu, SS
Ed, AB,
Ve

Eu, SO,
Ed

Ed, AB,
Ve Low

Long SS, SO

SS

AB, Ve SO

SO, Ed
AB, Ve

AB, Ve

Short Eu, SO
AB, Ve,
Ed

SO, Eu
AB, Ve,
Ed

SE

High
Long

SO, Ed,
AB, Ve

SS, SO
AB, Ve SO, Ed

SO
AB, Ve

Short
SO, SS,
AB, Ve

AB, SS,
Ve, SO

Low
Long SO, SS

AB, SS,
SO, Ve

SO, AB,
Ve

AB,
SO, Ve

Short SO SO
PE

High
Long

SO, AB,
Ve

AB

AB, Ve,
SO

SO, AB,
Ve

AB

AB, Ve,
SO

Requirements of assembly performance includes High N50, High Sequence Coverage

(SC), Low Assembly Error rate (AER). For different requirements, We recommend

some de novo tools with order of priority according to properties of sequence reads,

including s ingle-end/paired-end, GC content, read length and sequence length. SE,

Single end reads; PE, Paired end reads; Eu, Euler-sr; SS, SSAKE; Ed, Edena; AB,

ABySS; Ve, Velvet; SO, SOAPdenovo.

SSAKE provided good sequence coverage, and also generated

good N50 lengths when assembling sequences with low GC con-

tent. On the other hand, SSAKE tended to generate more assembly

errors and needed more depth of coverage to reach DCAP than

most of the other tools tested. The time and memory usage of

SSAKE was also the highest of the tools tested. Our results indi-

cated that assembly of large sequences (e.g. Homo sapiens) was

not feasible with SSAKE.

VCAKE produced the shortest N50 lengths in most situations,

and the sequence coverage by VCAKE was comparable to

SSAKE. VCAKE also generated many assembly errors, even high-

er than that of SSAKE under certain test conditions. The computa-

tional resources required to run VCAKE were a little less than

those required for SSAKE.

In assembling single-end short reads, Euler-sr produced the

longest N50 values, but it also generated high assembly error rates,

comparable to that of SSAKE. In addition, sequence coverage of

Euler-sr was the lowest under most test situations. Euler-sr con-

sumed intermediate computational resources.

Under most conditions tested, Velvet and ABySS show similar

assembly performance; they generated similar N50 lengths, their

DCAPs were relatively low, and they required acceptable compu-

tational resources. Consequently, it is feasible to use these tools for

assembling large sequences, such as those obtained for Homo sa-

 at U
niversity of N

ebraka-Lincoln Libraries on January 28, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

Lin Y et al. Bioinformatics 2011;27:2031-2037

‘–’	 denotes	 run*me	 is	 too	 long	 (>10	 days)	 to	 get	 assembly	 results	

RAM	 used	

6

SOAPdenovo; in paired-end reads assembly of H.sap-3, Vel-

vet could not even finish the assembly.

• In general, SOAPdenovo and ABySS were more efficient

than other tools in terms of runtime and memory usage.

SSAKE consumed the greatest amount of computational re-

sources.

Table 6. Comparison of runtime and RAM in the computational
demand test

 Runtime (s)

Bench.Seq

(Length: bp)
E.coli
(4.6M)

C.ele
(20.9M)

H.sap-2
(50.3M)

H.sap-3
(100.5M)

SSAKE 2,776 --- --- ---
VCAKE 1,672 16,742 --- ---
Euler-sr 1,689 11,961 29,622 ---
Edena 895 8,450 17,043 ---
Velvet 205 1,003 2,786 6,098
ABySS 265 1,300 3,307 6,608

SE

SOAPdenovo 62 253 560 1,029
SSAKE 9,163 --- --- ---

Euler-sr 1,455 15,068 --- ---
Velvet 229 1,351 55,581 ---
ABySS 458 3,081 9,199 21,683

PE

SOAPdenovo 78 374 889 2,257

 RAM (MB)

Bench.Seq

(Length: bp)
E.coli
(4.6M)

C.ele
(20.9M)

H.sap-2
(50.3M)

H.sap-3
(100.5M)

SSAKE 9,933 --- --- ---

VCAKE 4,099 17,408 --- ---
Euler-sr 1,536 7,065 13,312 ---
Edena 1,741 7,557 30,720 ---
Velvet 1,229 4,045 9,830 22528
ABySS 1,126 3,993 8,909 18432

SE

SOAPdenovo 935 2,867 8,089 18227
SSAKE 16,384 --- --- ---

Euler-sr 1,638 7,578 --- ---
Velvet 1,331 5,324 30,720 ---
ABySS 950 4,505 9,830 18,432

PE

SOAPdenovo 1,638 5,939 10,342 19,456

Bench.Seq: Benchmark Sequence; s: second; MB: megabytes; SE: Single-End Reads

Assembly; PE: Paired-End Reads Assembly. “---” denotes the RAM of computer is

not enough or runtime is too long (greater than 10 days) to get assembly results.

In this test, we also analyzed N50 lengths, sequence coverage,

and assembly error rate. The results were consistent with several

conclusions in previous sections (Supplemental Table 16).

4 CONCLUSIONS AND DISCUSSIONS

This study compared seven publically available and commonly

used de novo assembly tools: SSAKE, VCAKE, Euler-sr, Edena,

Velvet, ABySS and SOAPdenovo. These tools are specifically

designed to assemble large numbers of short reads generated by

next-generation sequencing platforms.

In analyzing these tools, stronger performance is indicated by

higher N50 values, higher sequence coverage, lower assembly

error rates, and lower computational resource consumption (to

enable assembly of larger genomes). The performance of different

assembly tools was dependent, to some extent, on the test condi-

tions. Based on the results of our investigation, we propose the

following guidelines for tool selection. Generally, SSAKE, Edena

and Euler-sr need higher depths of coverage (~50x) than Velvet,

ABySS and SOAPdenovo(~30x) to generate higher N50 lengths;

SOAPdenovo was the fastest of all tools, and ABySS almost al-

ways consumed the least memo ry space. We have developed a

tentative reference/guidelines for selecting optimal de novo tools

under varying conditions (Table 7). Specific co mments regarding

the performance of individual tools under different conditions are

summarized below.

Table 7. Recommendations for de novo tool selection under vary-
ing conditions

Read Property Small Genome Large Genome

 GC Read
High
N50

High
SC

Low
AER

High
N50

High
SC

Low
AER

Short Eu, SS
Ed, AB,
Ve

Eu, SO,
Ed

Ed, AB,
Ve Low

Long SS, SO

SS

AB, Ve SO

SO, Ed
AB, Ve

AB, Ve

Short Eu, SO
AB, Ve,
Ed

SO, Eu
AB, Ve,
Ed

SE

High
Long

SO, Ed,
AB, Ve

SS, SO
AB, Ve SO, Ed

SO
AB, Ve

Short
SO, SS,
AB, Ve

AB, SS,
Ve, SO

Low
Long SO, SS

AB, SS,
SO, Ve

SO, AB,
Ve

AB,
SO, Ve

Short SO SO
PE

High
Long

SO, AB,
Ve

AB

AB, Ve,
SO

SO, AB,
Ve

AB

AB, Ve,
SO

Requirements of assembly performance includes High N50, High Sequence Coverage

(SC), Low Assembly Error rate (AER). For different requirements, We recommend

some de novo tools with order of priority according to properties of sequence reads,

including s ingle-end/paired-end, GC content, read length and sequence length. SE,

Single end reads; PE, Paired end reads; Eu, Euler-sr; SS, SSAKE; Ed, Edena; AB,

ABySS; Ve, Velvet; SO, SOAPdenovo.

SSAKE provided good sequence coverage, and also generated

good N50 lengths when assembling sequences with low GC con-

tent. On the other hand, SSAKE tended to generate more assembly

errors and needed more depth of coverage to reach DCAP than

most of the other tools tested. The time and memory usage of

SSAKE was also the highest of the tools tested. Our results indi-

cated that assembly of large sequences (e.g. Homo sapiens) was

not feasible with SSAKE.

VCAKE produced the shortest N50 lengths in most situations,

and the sequence coverage by VCAKE was comparable to

SSAKE. VCAKE also generated many assembly errors, even high-

er than that of SSAKE under certain test conditions. The computa-

tional resources required to run VCAKE were a little less than

those required for SSAKE.

In assembling single-end short reads, Euler-sr produced the

longest N50 values, but it also generated high assembly error rates,

comparable to that of SSAKE. In addition, sequence coverage of

Euler-sr was the lowest under most test situations. Euler-sr con-

sumed intermediate computational resources.

Under most conditions tested, Velvet and ABySS show similar

assembly performance; they generated similar N50 lengths, their

DCAPs were relatively low, and they required acceptable compu-

tational resources. Consequently, it is feasible to use these tools for

assembling large sequences, such as those obtained for Homo sa-

 at U
niversity of N

ebraka-Lincoln Libraries on January 28, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

Lin Y et al. Bioinformatics 2011;27:2031-2037 ‘–’	 denotes	 the	 RAM	 of	 computer	 is	 not	
enough	

Whole	 genome	 sequencing	

•  De	 Novo	 whole	 genome	 sequencing	
•  Mapping	 assembly	 (Reference-‐guided	
assembly)	 (Resequencing)	

	

Paired-‐end	 sequencing	
•  Paired-‐End	 sequencing	 (for	 Mate-‐pairs)	

–  Sequence	 two	 ends	 of	 a	 fragment	 of	 known	 size.	

–  Currently	 fragment	 length	 (insert	 size)	 can	 range	 from	 200	
bps	 –	 10,000	 bps	

–  Paired-‐end	 sequencing	 is	 helpful	 for	 assembly	 and	 loca*ng	
repeat.	 It	 also	 can	 detect	 rearrangements,	 including	
inser*ons	 and	 dele*ons	 (indels)	 and	 inversions.	 	

–  As	 paired	 end	 reads	 are	 more	 likely	 to	 align	 to	 a	 reference,	
the	 quality	 of	 the	 en*re	 data	 set	 improves	

Paired-‐end	 sequencing	
by	 Illumina	

Both	 the	 forward	 and	 reverse	
template	 strands	 of	 each	
cluster	 	 can	 be	 sequenced.	

A	 simple	 modifica*on	 to	 the	
standard	 single-‐read	 DNA	
library	 prepara*on.	 	

Solid-‐phase	 amplifica*on	 and	
Cyclic	 reversible	 termina*on	 	 	

Mate-‐pair	 libraries	

Berglund	 et	 al.	 Inves/ga/ve	 Gene/cs	 2011	 2:23	

adaptor	

Use	 computer	 sogware	 to	
remove	 adaptor	 sequences	

bio/nylated	
Circulariza*on	

De	 Novo	 sequencing	

•  New	 species/strains	
•  Challenge	 of	 assembly	 with	 short	 reads	

–  8x	 coverage	 of	 3	 GB	 genome	 =	 750	 million	 fragments	
–  Exponen*al	 problem	 for	 all-‐vs-‐all	 algorithm	 (overlap)	

•  Big	 problem	 with	 repeats	
•  Assemble	 con*gs,	 fill	 gaps	
•  Paired-‐end	 reads	 are	 essen*al	

Shotgun	 Sequencing	

•  Breaking	 the	 genome	 into	 a	 collec*on	 of	 small	
DNA	 fragments	 	

•  Sequencing.	 	
•  Recons*tute	 the	 genome.	

Shotgun	 sequencing	
is	 a	 laboratory	
technique	 for	
determining	 the	 DNA	
sequence	 of	 an	
organism's	 genome.	 	

Assembly Pipeline
Preprocess
& estimate

Assembling	

Scaffolding	

Repeat
Removing	

Shotgun sequencing
statistics

34

Typical contig coverage

1
2
3
4
5
6 C

ov
er

ag
e

Contig

Reads

Imagine raindrops on a sidewalk:
It can be modeled by Poisson distribution

L = read length
G = genome size
N = number of reads
c = coverage= (NL / G) Average	 coverage	

35

Lander-Waterman statistics

L = read length
G = genome size
N = number of reads
c = coverage =(NL / G)
T = minimum detectable overlap
σ = 1 – T/L

E(# of islands) = Ne-cσ
E(island size) = L((ecσ – 1) / c + 1 – σ)
contig = island with 2 or more reads

Smith-‐Waterman	 algorithm	 	 for	 sequence	 comparison	

36

Example

c N #islands #contigs bases not in
any read

bases not in
contigs

1 1,667 655 614 698 367,806

3 5,000 304 250 121 49,787

5 8,334 78 57 20 6,735

8 13,334 7 5 1 335

Genome size: 1 Mbp Read Length: 600

Experimental data
X

coverage # ctgs % > 2X avg ctg size (L-W) max ctg size # ORFs

1 284 54 1,234 (1,138) 3,337 526

3 597 67 1,794 (4,429) 9,589 1,092

5 548 79 2,495 (21,791) 17,977 1,398

8 495 85 3,294 (302,545) 64,307 1,762

complete 1 100 1.26 M 1.26 M 1,329

Numbers based on artificially chopping up the genome of
Wolbachia pipientis dMel

Errors	 in	 Lander-‐Waterman	 Es*mate	

Lander-‐Waterman	 has	 errors:	

• 	 repeats	

• 	 GC/AT	 rich	 regions	
• 	 other	 low	 complexity	 regions	

• 	 cloning	 biases	 in	 shotgun	 libraries	

Expected average contig length for a range of different read lengths and coverage values.

Schatz M C et al. Genome Res. 2010;20:1165-1173 Copyright © 2010 by Cold Spring Harbor Laboratory Press

Read	 length	

Dog:	 2.5	 billion	 bp	
Panda:	 3	 billion	 bp	

Schatz M C et al. Genome Res. 2010;20:1165-1173

One	 more	 example	

For	 yeast	 12Mbp	

• 	 read	 length:	 200-‐400	 bp	

• 	 coverage:	 50X	 	 	 	 (how	 many	 reads	 do	 we	

need?)	

• 	 paired-‐end	 read	 insert	 size:	 8kb	 (beYer	 to	

make	 mul*ple	 libraries	 with	 different	 insert	

sizes.)	

Assembly Pipeline
Preprocess
& estimate

Assembling	

Scaffolding	

Repeat
Removing	

•  Velvet:	 	 small	 genomes	

•  ABySS:	 large	 genome	

Scaffolding	
•  Scaffolding	 groups	 con*gs	 into	 subsets	
with	 known	 order	 and	 orienta*on.	

•  Nodes	 are	 con*gs	
•  Directed	 edge	 is	 between	 two	 nodes	 if	
they	 are	 adjacent	 in	 the	 genome.	
	

Contig 1 Contig 2	

Scaffolding	
•  Mate	 pairs	 ,	 if	 in	 different	 con*gs,	 have	 a	
chance	 of	 being	 neighbors.	
	

Scaffolding	 	

Align	 reads	 from	 short	
insert	 or	 long	 insert	
library	

Join	 con*gs	 using	 evidence	 from	
paired	 end	 data	

Con*gs	 from	 assembly	

Scaffold	

Scaffolding	 Algorithm	
•  Find	 all	 connected	 components	
•  Find	 a	 consistent	 orienta*on	 for	 all	 nodes	 in	 the	
graph	 (all	 con*gs).	 	
– Nodes	 (con*gs)	 have	 two	 types	 of	 edges	

• Same	 orienta*on	
• Different	 orienta*on	

– Make	 sure	 linked	 con*gs	 have	 consistent	
orienta*on.	

– Op*miza*on	 problem	 –	 find	 the	 smallest	 number	
of	 edges	 to	 be	 removed	 so	 that	 	 all	 con*gs	 have	
consistent	 orienta*on.	

•  Find	 the	 Hamiltonian	 path	 again.	

Scaffolding	 sogware	

•  Some	 assembly	 sogware,	 such	 velvet,	 can	 do	 scaffolding	
as	 well.	

•  Bambus	 -‐	 hYp://www.cbcb.umd.edu/sogware/bambus	
•  SSPACE	 -‐	
hYp://www.baseclear.com/landingpages/basetools-‐a-‐
wide-‐range-‐of-‐bioinforma*cs-‐solu*ons/sspacev12/	

•  GRASS	 -‐	 hYp://code.google.com/p/tud-‐scaffolding/	 	

	

Addi*onal	 techniques	 for	 orienta*on	

•  Physical	 mapping.	 Using	 informa*on	 from	 Bacterial	
Ar*ficial	 Chromosome	 (BAC)-‐based	 physical	 maps.	
Physical	 maps	 are	 built	 by	 clustering	 together	 of	
BACs	 sharing	 por*ons	 of	 a	 DNA	 “fingerprint,”	 which	
is	 a	 paYern	 of	 DNA	 fragments	 of	 various	 sizes.	

•  Using	 markers	 along	 a	 DNA	 strand	 as	 independent	
informa*on	 for	 scaffolding	 sogware.	 Markers	 are	
known	 sequences	 of	 nucleo*des	 and	 tags.	 Markers	
are	 searched	 in	 the	 con*gs.	

•  Using	 large	 scale	 maps	 of	 landmarks	 that	 lie	 along	
the	 the	 chromosomal	 DNA.	

	

Scaffolding	

•  Addi*onal	 informa*on	 is	 also	 useful:	
– Sequences	 of	 closely	 related	 organisms	 are	 also	
used	 as	 scaffolding	 informa*on.	

	 	 	 	 Example:	 aligning	 scaffolds	 of	 a	 mouse	 genome	 to	
the	 human	 genome	

Scaffolding:	 Issues	

•  Errors	 in	 length	 of	 inserts	 (affec*ng	 distances	 between	
clone	 mates)	

•  Physical	 mapping	 is	 error	 prone.	
•  first	 builds	 a	 sequence	 based	 on	 linking	 informa*on	
with	 high	 confidence,	 then	 factors	 in	 linking	 informa*on	
with	 lower	 confidence.	

	

Assembly Pipeline
Preprocess
& estimate

Assembling	

Scaffolding	

Repeat
Removing	

The variability in repetitiveness among
species species.

Schatz M C et al. Genome Res. 2010;20:1165-1173 Copyright © 2010 by Cold Spring Harbor Laboratory Press

The k-mer uniqueness ratio for five well-known
organisms and one single-celled human parasite.

The	 ra*o	 ==	 	 the	
percentage	 of	 the	
genome	 that	 is	
covered	 by	 unique	
sequences	 of	 length	
k	 or	 longer.	

The	 figure	 shows	 how	
much	 of	 each	 genome	
would	 be	 covered	 by	 k-‐
mers	 (reads)	 that	 occur	
exactly	 once.	

Repeat Control Issues	

•  Assembly	 programs	 should	 detect	 repeats	 in	
the	 assembly	 process	 and	 not	 ager.	 	
– Incorrect	 genome	 reconstruc*on	

•  Assemblers	 should	 try	 to	 resolve	 correctly	 as	
many	 repeats	 as	 possible.	
– Avoid	 intensive	 human	 labor	

54

Repeat Control – When? & How?
•  pre-assembly: find fragments that belong to repeats

–  statistically (most existing assemblers)
–  repeat database (RepeatMasker)

•  during assembly: detect "tangles" indicative of repeats
(Pevzner, Tang, Waterman 2001)

•  post-assembly: find repetitive regions and potential
mis-assemblies.
–  Reputer, RepeatMasker
–  "unhappy" mate-pairs (too close, too far, mis-

oriented)

sequencing error (2d for positions within a distance d ! l from the
endpoint of the reads). A greedy approach for the Error Correction
Problem is to look for error corrections in the reads that reduce the
size of Sl by 2l (or 2d for positions close to the endpoints). This
simple procedure already eliminates 86.5% of the errors in se-
quencing reads. EULER uses a more involved approach that elimi-
nates 97.7% of sequencing errors and transforms the original
sequencing data with 4.8 errors per read on average into almost
error-free data with 0.11 errors per read on average (22).

A word of caution is in place. Our error-correction procedure is
not perfect while deciding which nucleotide, among, let us say, A or
T is correct in a given l-tuple within a read. If the correct nucleotide
is A, but T is also present in some reads covering the same region,
the error-correction procedure may assign T instead of A to all
reads, i.e., to introduce an error rather than to correct it. Because
our algorithm sometimes introduces errors, data corruption is
probably a more appropriate name for this approach! Introducing
an error in a read is not such a bad thing, as long as the errors from
overlapping reads covering the same position are consistent (i.e.,
they correspond to a single mutation in a genome). An important
insight is that, at this stage of the algorithm, we do not care much
whether we correct or introduce errors in the sequencing reads.
From an algorithmic perspective, introducing a consistent error that
simply corresponds to changing a nucleotide in a final assembly is
not a big deal. It is much more important to make sure that we
eliminate a competition between A and T at this stage, thus
reducing the complexity of the de Bruijn graph. In this way, we
eliminate false edges in our graph and deal with this problem later:
the correct nucleotides are easily reconstructed either by a majority
rule or by a variation of the Churchill–Waterman algorithm (23).
For the NM sequencing project, orphan elimination corrects
234,410 errors and introduces 1,452 errors.

Eulerian Superpaths
Given a set of reads S " {s1, . . ., sn}, define the de Bruijn graph
G(Sl) with vertex set Sl#1 (the set of all (l # 1)-tuples from S) as
follows. An (l # 1)-tuple v ! Sl#1 is joined by a directed edge with
an (l # 1)-tuple w ! Sl#1, if Sl contains an l-tuple for which the first
l # 1 nucleotides coincide with v and the last l # 1 nucleotides
coincide with w. Each l-tuple from Sl corresponds to an edge in G.
If S contains the only sequence s1, then this sequence corresponds
to a path visiting each edge of the de Bruijn graph, a Chinese
Postman path (20). The Chinese Postman Problem is closely related
to the problem of finding a path visiting every edge of a graph
exactly once, an Eulerian Path Problem (24). One can transform the
Chinese Postman Problem into the Eulerian Path Problem by
introducing multiplicities of edges in the de Bruijn graph. For
example, one can substitute every edge in the de Bruijn graph by
k parallel edges, where k is the number of times the edge is used in
the Chinese Postman path. If S contains the only sequence s1, this
operation creates k ‘‘parallel’’ edges for every l-tuple repeating k
times in s1 (23). Finding Eulerian paths is a well known problem that
can be efficiently solved in linear time. We assume that S contains
a complement of every read and that the de Bruijn graph can be
partitioned into two subgraphs (the ‘‘canonical’’ one and its reverse
complement).

With real data, the errors hide the correct path among many
erroneous edges. The graph corresponding to the error-free data
from the NM project has 4,039,248 vertices (roughly twice the
length of the genome), whereas the graph corresponding to real
sequencing reads has 9,474,411 vertices (for 20-tuples). After the
error-correction procedure, this number is reduced to 4,081,857.

A vertex v is called a source if indegree(v) " 0, a sink if
outdegree(v) " 0, and a branching vertex if indegree(v)!
outdegree(v) $ 1. For the NM genome, the de Bruijn graph has
502,843 branching vertices for original reads (for l-tuple size 20).
Error corrections simplify this graph and lead to a graph with 382
sources and sinks and 12,175 branching vertices. Because the de

Bruijn graph gets very complicated even in the error-free case,
taking into account the information about which l-tuples belong to
the same reads (that was lost after the construction of the de Bruijn
graph) helps us to untangle this graph.

A path v1 . . . vn in the de Bruijn graph is called a repeat if
indegree(v1) $ 1, outdegree(vn) $ 1, and indegree (v1) "
outdegree(vi) " 1 for 1 ! i ! n # 1 (Fig. 3). Edges entering the
vertex v1 are called entrances into a repeat, whereas edges
leaving the vertex vn are called exits from a repeat. An Eulerian
path visits a repeat a few times, and every such visit defines a
pairing between an entrance and an exit. Repeats may create
problems in fragment assembly, because there are a few en-
trances in a repeat and a few exits from a repeat, but it is not clear
which exit is visited after which entrance in the Eulerian path. A
read-path covers a repeat if it contains an entrance into and an
exit from this repeat. Every covering read-path reveals some
information about the correct pairings between entrances and
exits. A repeat is called a tangle if there is no read-path
containing this repeat (Fig. 3). Tangles create problems in
fragment assembly, because pairings of entrances and exits in a
tangle cannot be resolved via the analysis of read-paths. To
address this issue, we formulate the following generalization of
the Eulerian Path Problem:

Eulerian Superpath Problem. Given an Eulerian graph and a
collection of paths in this graph, find an Eulerian path in this
graph that contains all these paths as subpaths.

To solve the Eulerian Superpath Problem, we transform both
the graph G and the system of paths ! in this graph into a new
graph G1 with a new system of paths !1. Such transformation is
called equivalent if there exists a one-to-one correspondence
between Eulerian superpaths in (", !) and ("1, !1). Our goal is
to make a series of equivalent transformations

%", !& 3 %"1 , !1& 3 · · · 3 %"k , !k&

that lead to a system of paths !k, with every path being a single
edge. Because all transformations on the way from (", !) to
("k, !k) are equivalent, every solution of the Eulerian Path
Problem in ("k, !k) provides a solution of the Eulerian Super-
path Problem in (", !).

Below, we describe a simple equivalent transformation that solves
the Eulerian Superpath Problem in the case when the graph G has
no multiple edges. Let x " (vin, vmid) and y " (vmid, vout) be two
consecutive edges in graph G, and let !x,y be a collection of all paths
from ! that include both these edges as a subpath. Informally,
x,y-detachment bypasses the edges x and y via a new edge z and
directs all paths in !x,y through z, thus simplifying the graph.
However, this transformation affects other paths and needs to be
defined carefully. Define !3x as a collection of paths from ! that
end with x and !y3 as a collection of paths from ! that start with
y. The x, y-detachment is a transformation that adds a new edge z "
(vin, vout) and deletes the edges x and y from G (Fig. 4a). This
detachment alters the system of paths ! as follows: (i) substitute z

Fig. 3. A repeat v1 . . . vn and a system of paths overlapping with this repeat.
The uppermost path contains the repeat and defines the correct pairing
between the corresponding entrance and exit. If this path were not present,
the repeat v1 . . . vn would become a tangle.

Pevzner et al. PNAS ! August 14, 2001 ! vol. 98 ! no. 17 ! 9751

G
EN

ET
IC

S
A

PP
LI

ED
M

A
TH

EM
A

TI
CS

Detec*ng	 repeats	
pre-assembly: 	

•  Sta*s*cal	 methods	
– Assemblers assume that reads are sampled

uniformly at random.
– Significant deviations from average coverage

flagged as repeats.
–  frequent k-mers are ignored
– “arrival” rate of reads in contigs compared

with theoretical value.
(e.g., 800 bp reads & 8x coverage - reads "arrive" every 100 bp)

Detec*ng	 repeats	
during assembly	

•  Example:	 In	 Euler	 assembly	 program	
– Finds	 repeats	 by	 complex	 parts	 of	 the	 graph	
constructed	 during	 the	 assembly	 process.	

– Researchers	 look	 into	 these	 complex	 areas	 to	 try	
and	 resolve	 repeats.	

– Assemblers	 can	 use	 clone	 mate	 informa*on	 to	
find	 incorrect	 assemblies.	 This	 is	 based	 on	 finding	
clone-‐mate	 pairs	 too	 close	 or	 too	 far	 from	 one	
another.	 (“unhappy”	 mate-‐pairs)	

57

Detec*ng	 repeats	
post-assembly: Mis-assembled repeats

 a b c

a c
b

a b c d
I II III

I

II

III
a

b c

d

b c

a b d c e f

I II III IV

I III II IV

a d b e c f

a

collapsed tandem excision

rearrangement

58

Repeat resolution
•  Assemblers deduce that areas covered by a large

number of reads may show an over-collapsed

repeat.

•  Problems with this - samples are not uniformly

distributed (for example, non-random libraries and

poor clonability regions). leads to false positives.

•  Repeats with low copy number are missed - leads

to false negatives.

Repeat resolution
•  Techniques	 for	 repairing	 sequencing	 errors	 during	 repeat	

resolu*on	
– find	 clusters	 of	 reads	 where	 the	 clusters	 share	
differences.	 	

•  For	 example,	 four	 reads	 contain	 an	 A	 ,	 four	 contain	 a	 B.	
it	 is	 likely	 that	 the	 first	 four	 reads	 are	 from	 one	 copy	
and	 the	 last	 four	 from	 a	 different	 one.	

– Drawbacks	 are	 if	 certain	 areas	 of	 the	 sequence	
have	 low	 coverage.	 	

– Difficult	 to	 separate	 from	 true	 polymorphism	
	

Discussion:	
Virtual	 genome	 assembly	

•  Plant	 mitochondrion	 genome	 500,000	 bp	 	 	 	 DNA	 	 	 	 	 circular	
•  How	 can	 you	 get	 mitochondria	 DNA?	 What	 problems	 do	 we	 need	 to	 concern	 for	

this	 step?	
•  For	 DNA	 fragmen*ng,	 what	 sizes	 of	 DNA	 fragments	 will	 you	 use?	 A.	 1Kbp,	 B.	 5kbp,	

C.	 both	
•  Pair-‐ended	 or	 single	 ended?	
•  What	 depth	 do	 you	 sequence?	 how	 many	 lanes	 do	 you	 need	 if	 you	 use	 illumina	

hiseq	 2000?	 or	 how	 many	 reads	 do	 you	 need	 to	 get?	 	
•  Which	 assembler	 will	 you	 use?	 Why?	
•  What	 computer	 do	 you	 used	 to	 do	 assemble?	 A.	 4GB	 laptop	 B.	 50GB	 worksta*on	

C.	 computer	 cluster	 in	 HCC	
•  According	 to	 your	 es*mate,	 how	 long	 does	 it	 take	 for	 assemble?	 A.	 30	 minutes	 B.2	

hours	 C.	 12	 hours	 D.	 4	 days	
•  What	 sogware	 do	 you	 used	 to	 do	 scaffold?	 how	 long	 does	 it	 take?	 	
•  What	 is	 longest	 gap	 in	 one	 scaffold?	 How	 do	 you	 fill	 gaps?	
•  How	 do	 you	 determine	 if	 your	 assembled	 genome	 is	 good	 enough?	
•  how	 do	 you	 annotate	 genes?	 	

On	 Thursday,	 Jan	 30.	

