
Next-­‐genera*on	
 sequencing	

Lecture	
 5	

	

Main	
 algorithm	
 used:	

•  Greedy	
 algorithms	

•  Overlap	
 Layout	
 Consensus	

•  De	
 brujin	
 graphs	

Greedy Assembly

•  Build a rough map of
fragment overlaps
(pairwise alignment)

•  Pick the largest scoring
overlap

•  Merge the two fragments
•  Repeat until no more

merges can be done

Greedy Assembly
•  Advantages:	

–  Simple	
 and	
 easy	
 to	
 implement	
 	

–  effec*ve	

•  Disadvantages	

–  Since	
 local	
 informa*on	
 is	
 considered	
 at	
 each	
 step,	
 the	

assembler	
 can	
 be	
 easily	
 confused	
 by	
 complex	
 repeats,	

leading	
 to	
 mis-­‐assemblies.	

–  Local	
 approach.	
 Easy	
 to	
 be	
 trapped	
 into	
 a	
 local	

op*mal	
 solu*on	
 (local	
 minimum).	

–  Early	
 mistakes	
 create	
 bad	
 assemblies.	

R1	
 R2	

R5	

R3	
 R4	

Try	
 to	
 find	
 the	
 Hamiltonian	
 path:	

•  A	
 path	
 in	
 the	
 graph	
 contains	
 each	
 node	
 exactly	
 once.	

•  Following	
 the	
 Hamiltonian	
 path,	
 combine	
 the	

overlapping	
 sequences	
 in	
 the	
 nodes	
 into	
 the	

sequence	
 of	
 the	
 genome	

•  Computa*onally	
 expensive	
 (NP-­‐hard	
 problem)	

CGTAGTGGCAT

ATTCACGTAG

Overlap-layout-consensus
•  BeYer	
 than	
 Greedy	
 algorithm.	
 It	
 can	
 generate	
 correct	

order	
 of	
 con*gs	
 that	
 the	
 Greedy	
 algorithms	
 may	
 have	

errors.	

•  No	
 efficient	
 algorithm	
 to	
 find	
 the	
 Hamiltonian	
 path	

•  Short	
 fragment	
 length	
 =	
 very	
 small	
 overlap	
 therefore	

many	
 false	
 overlaps.	

•  Overlap	
 discovery	
 is	
 sensi*ve	
 to	
 minimum	
 overlap	
 length	

and	
 minimum	
 percent	
 iden*ty	
 required	
 for	
 an	
 overlap.	

•  Overlap	
 discovery	
 is	
 also	
 *me	
 consuming.	

•  Large	
 number	
 of	
 reads	
 +	
 short	
 overlap	
 +	
 higher	
 error	
 are	

challenging	
 for	
 the	
 overlap	
 -­‐	
 layout	
 -­‐	
 consensus	
 approach	

•  Can’t	
 assemble	
 repeat	
 longer	
 than	
 read	
 length	

•  It	
 is	
 mostly	
 used	
 with	
 Sanger	
 or	
 454	
 data.	

Main	
 algorithm	
 used:	

•  Greedy	
 algorithms	

•  Overlap	
 Layout	
 Consensus	

•  De	
 bruijn	
 graphs	

De	
 Bruijn	
 Graphs	

Flicek,	
 Nature	
 Methods,	
 2009	

1.  Get	
 k-­‐bp	
 (k-­‐mer)	
 subsequences	
 for	

reads.	
 	

2.  k-­‐mers	
 in	
 the	
 reads	
 are	
 collected	

into	
 nodes	
 and	
 the	
 coverage	
 at	

each	
 node	
 is	
 recorded.	
 Link	
 two	
 k-­‐
mer	
 nodes	
 if	
 they	
 have	
 overlap.	

3.  the	
 graph	
 is	
 simplified	
 to	
 combine	

nodes	
 that	
 are	
 associated	
 with	
 the	

con*nuous	
 linear	
 stretches	
 into	

single,	
 larger	
 nodes	
 of	
 various	
 k-­‐
mer	
 sizes.	
 	

4.  error	
 correc*on	
 removes	
 the	
 *ps	

and	
 bubbles	
 that	
 result	
 from	

sequencing	
 errors	
 and	
 creates	
 a	

final	
 graph	
 structure	
 that	

accurately	
 and	
 completely	

describes	
 in	
 the	
 original	
 genome	

sequence.	

Differences between an overlap graph and a de Bruijn graph for assembly.

Schatz M C et al. Genome Res. 2010;20:1165-1173

Copyright © 2010 by Cold Spring Harbor Laboratory Press

De	
 Bruijn	
 Graphs	
 example	

“It	
 was	
 the	
 best	
 of	
 *mes,	
 it	
 was	
 the	
 worst	
 of	
 *mes,	
 it	
 was	
 the	
 age	
 of	

wisdom,	
 it	
 was	
 the	
 age	
 of	
 foolishness,	
 it	
 was	
 the	
 epoch	
 of	
 belief,	
 it	
 was	

the	
 epoch	
 of	
 incredulity,....	
 “	

Dickens,	
 Charles.	
 A	
 Tale	
 of	
 Two	
 Ci*es.	
 1859.	
 London:	
 Chapman	
 Hall	

Velvet	
 example	
 courtesy	
 of	
 J.	
 Leipzig	
 2010	

•  For	
 the	
 purposes	
 of	
 illustra*on,	
 we	
 can	
 use	
 human	
 readable	
 text	

to	
 explore	
 how	
 assemblies	
 work.	

•  This	
 is	
 an	
 example	
 taken	
 from	
 Leipzig	
 et	
 al	
 2001.	

•  In	
 it	
 he	
 uses	
 the	
 opening	
 paragraph	
 from	
 Dickens’	
 “A	
 tale	
 of	
 two	

ci*es”.	

•  It	
 is	
 an	
 appropriate	
 example	
 because	
 like	
 genomes,	
 it	
 contains	

strings	
 that	
 are	
 repeat	
 over	
 and	
 over.	

De	
 Bruijn	
 Graphs	
 example	

itwasthebestogimesitwastheworstogimesitwastheageofwisdomitwastheageoffoolishness…	

Generate	
 	
 random	
 ‘reads’	
 How	
 do	
 we	
 assemble?	

Tradi*onal	
 all-­‐vs-­‐all	
 comparisons	
 of	
 datasets	
 this	
 size	
 require	
 immense	

computa*onal	
 resources.	

	

De	
 Bruijn	
 solu*on:	
 Construct	
 a	
 graph	
 efficiently	
 	

fincreduli	
 geoffoolis	
 Itwasthebe	
 Itwasthebe	
 geofwisdom	
 itwastheep	
 epochofinc	
 *mesitwas	
 stheepocho	
 nessitwast	
 wastheageo	
 theepochof	
 stheepocho	
 hofincredu	

estogimes	
 eoffoolish	
 lishnessit	
 hokeliefi	
 pochofincr	
 itwasthewo	
 twastheage	
 togimesit	
 domitwasth	
 ochokelie	
 eepochoke	
 eepochoke	
 astheworst	
 chofincred	
 theageofwi	

iefitwasth	
 ssitwasthe	
 astheepoch	
 efitwasthe	
 wisdomitwa	
 ageoffooli	
 twasthewor	
 ochokelie	
 sdomitwast	
 sitwasthea	
 eepochoke	
 ffoolishne	
 eofwisdomi	
 hebestogi	

stheageoff	
 twastheepo	
 eworstogi	
 stogimesi	
 theepochof	
 esitwasthe	
 heepochofi	
 theepochof	
 sdomitwast	
 astheworst	
 rstogimes	
 worstogim	
 stheepocho	
 geoffoolis	

ffoolishne	
 *mesitwas	
 lishnessit	
 stheageoff	
 eworstogi	
 orstogime	
 fwisdomitw	
 wastheageo	
 heageofwis	
 incredulit	
 ishnessitw	
 twastheepo	
 wasthewors	
 astheepoch	

heworstog	
 okeliefit	
 wastheageo	
 heepochofi	
 pochofincr	
 heageofwis	
 stheageofw	
 fincreduli	
 astheageof	
 wisdomitwa	
 wastheageo	
 astheepoch	
 olishnessi	
 astheepoch	

itwastheep	
 twastheage	
 wisdomitwa	
 keliefitw	
 bestogime	
 epochokel	
 theepochof	
 sthebestof	
 lishnessit	
 hokeliefi	
 Itwasthebe	
 ishnessitw	
 sitwasthew	
 ageofwisdo	

twastheage	
 esitwasthe	
 twastheage	
 shnessitwa	
 fincreduli	
 keliefitw	
 theepochof	
 mesitwasth	
 domitwasth	
 ochokelie	
 heageofwis	
 ogimesitw	
 stheepocho	
 bestogime	

twastheage	
 foolishnes	
 gimesitwa	
 thebestog	
 itwastheag	
 theepochof	
 itwasthewo	
 okeliefit	
 bestogime	
 mitwasthea	
 imesitwast	
 *mesitwas	
 orstogime	
 estogimes	

twasthebes	
 stogimesi	
 sdomitwast	
 wisdomitwa	
 theworstof	
 astheworst	
 sitwasthew	
 theageoffo	
 eepochoke	
 theageofwi	
 foolishnes	
 incredulit	
 okeliefit	
 chofincred	
 beliefitwa	

beliefitwa	
 wisdomitwa	
 eageoffool	
 eoffoolish	
 itwastheag	
 mesitwasth	
 epochofinc	
 ssitwasthe	
 itwastheep	
 astheageof	
 stheageoff	
 sitwasthee	
 thebestog	
 oolishness	

heepochok	
 ochokelie	
 wastheepoc	
 bestogime	
 mesitwasth	
 ebestogim	
 pochofincr	

…etc.	
 to	
 10’s	
 of	
 millions	
 of	
 reads	

De	
 Bruijn	
 Graphs	

Step	
 1:	
 “Kmerize”	
 	
 the	
 data	

Reads:	
 theageofwi	

age	

geo	

eof	

ofw	

fwi	

sthebestof	

sth	

the	

heb	

ebe	

bes	

est	

sto	

tof	

astheageof	

ast	

sth	

the	

hea	

eag	

age	

geo	

eof	

worstogim	

wor	

ors	

rst	

sto	

tof	

og	

gi	

*m	

imesitwast	

ime	

mes	

esi	

sit	

itw	

twa	

was	

ast	

…..etc	
 for	
 all	
 reads	
 in	
 the	
 dataset	

Kmers	
 :	

(k=3)	

the	

hea	

eag	

De	
 Bruijn	
 Graphs	

age	
 geo	
 eof	
 ofw	
 fwi	
 hea	
 eag	
 the	

sth	
 the	

heb	
 ebe	
 bes	
 est	
 sto	
 tof	

ast	
 sth	

the	
 hea	
 eag	
 age	
 geo	
 eof	

Look	
 for	
 k-­‐1	
 overlaps:	
 given	
 by	
 the	
 reads	

wor	
 ors	
 rst	

sto	
 tof	

og	
 gi	
 *m	

ime	
 mes	

esi	

sit	
 itw	
 twa	

was	

ast	

…..etc	
 for	
 all	
 ‘kmers’	
 in	
 the	
 dataset	

Step2	
 Build	
 the	
 graph	

De	
 Bruijn	
 Graphs	

	
 step3:	
 simplify	
 the	
 graph	

•  The	
 final	
 step	
 is	
 to	
 remove	
 redundancy,	
 result	
 in	
 the	
 final	
 De	
 Bruijn	
 Graph	

representa*on	
 of	
 our	
 genome.	

•  the	
 overlaps	
 between	
 reads	
 are	
 implicit	
 in	
 the	
 graph,	
 so	
 all	
 the	
 millions	
 v.s	

millions	
 of	
 comparisons	
 are	
 not	
 required.	

•  On	
 the	
 downside,	
 informa*on	
 is	
 lost	
 as	
 repe**ve	
 sequences	
 are	
 “collapsed”	

into	
 a	
 single	
 representa*on.	

De	
 Bruijn	
 Graphs	

step4:	
 Create	
 con*gs	

Find	
 the	
 Hamiltonian	
 path	
 or	
 cycle	
 in	
 the	
 De	
 Bruijn	

graph.	
 Each	
 path	
 in	
 the	
 simplified	
 De	
 Bruijn	
 graph	
 is	

a	
 Hamiltonian	
 path.	
 A	
 Hamiltonian	
 path	
 	
 is	
 a	
 con*g.	
 	

Common Problems
•  Spurs:	
 dead-­‐end	
 sequences	

•  Bubbles:	
 divergent	
 paths	
 that	
 then	
 converge	

•  Frayed	
 rope:	
 convergent	
 then	
 divergent	
 paths	

•  Cycles:	
 paths	
 convergent	
 upon	
 themselves	
 E88'9B75)$*4B7'98)

W*3F$ *3F3$

3F3*$

3F3W$

F3*W$

F3W3$

3*WF$ *WFF$

Spurs

W*3F$ *3F3$

3F3*$

3F3W$

F3*W$

F3W3$

3*WF$ *WFF$

Bubbles

3W3F$ W3FF$

WFFW$

3FFW$

FFW*$

W3F3$

*3F3$

3F3*$ F3*W$ 3*WF$ *WFF$
Frayed

Rope
WFFW$

3*3F$

FW3F$ FFW*$

FFW3$

Cycles W3F*$

3F*W$

*W3F$

F*W3$

Resolve	
 graph	
 complexity	

Strengths	
 and	
 problems	
 	

of	
 De	
 Bruijn	
 approach	

Strengths:	

•  No	
 need	
 to	
 calculate	
 the	
 overlaps	

•  Size	
 of	
 the	
 final	
 graph	
 is	
 propor*onal	
 to	
 the	
 genome	
 size	

•  successfully	
 for	
 very	
 short	
 reads	
 (<50bp)	

Problems:	

•  The	
 main	
 drawback	
 to	
 the	
 de	
 Bruijn	
 approach	
 is	
 the	
 loss	

of	
 informa*on	
 caused	
 by	
 decomposing	
 a	
 read	
 into	
 a	

path	
 of	
 k-­‐mers.	

•  require	
 an	
 enormous	
 amount	
 of	
 computer	
 space	

•  Can	
 only	
 resolve	
 k	
 long	
 repeat	

•  Loose	
 connec*vity	
 when	
 create	
 the	
 con*gs	

	

Strengths	
 and	
 problems	
 	

of	
 De	
 Bruijn	
 approach	

Pros:	
 correctly	
 links	
 two	
 sequences	

without	
 having	
 to	
 compute	
 overlap	

score.	
 (above	
 case)	

Cons:	
 two	
 sequences	
 are	
 linked	

without	
 any	
 real	
 overlap.	
 (leg	
 case)	

Schlebusch,	
 2012	

De	
 Bruijn	
 Assemblers	

•  Euler:	
 hYp://nbcr.sdsc.edu/euler/	
 ,	
 Sanger,	
 454,	
 2001-­‐2006	

•  Velvet:	
 hYp://www.ebi.ac.uk/~zerbino/velvet/,	
 small	
 genomes,	

Sanger,	
 454,	
 Solexa,	
 SOLiD,	
 2007-­‐2009	
 (very	
 good	
 for	
 small	
 genome)	

•  ABySS:	
 hYp://www.bcgsc.ca/plarorm/bioinfo/sogware/abyss,	
 large	

genome,	
 Solexa,	
 SOLiD,	
 2008-­‐2011	
 (for	
 very	
 large	
 genome)	

•  SOAP-­‐denovo:	
 hYp://soap.genomics.org.cn/soapdenovo.html,	

Solexa,	
 2009	

•  ALLPATH-­‐LG:	

hYp://www.broadins*tute.org/sogware/allpaths-­‐lg/blog/,	
 	
 large	

genome,	
 Solexa,	
 SOLiD,	
 2011	
 (very	
 good	
 performance	
 bu	
 require	
 2	

lib	
 of	
 different	
 insert	
 sizes)	

•  IDBA-­‐UD:	
 hYp://i.cs.hku.hk/~alse/hkubrg/projects/idba_ud/,	
 Sanger,
454,Solexa,	
 2010	
 	
 (metagenomic,	
 doesn’t	
 rely	
 on	
 coverage	
 to	
 remove	

error)	

Comparison	
 of	
 Assembly	
 tools	

Miller,	
 genomics,	
 2010,	
 95(6):315-­‐27	

sink node. Each assembler searches the graph but each constrains its
searches for reasons of scale. A search in CABOG's overlap graph
follows only one outward edge per node. Searches in AllPaths and
Velvet examine local regions of the K-mer graph that are anchored by
large contigs and populated by direct and transitive paired-end
linkage. Euler and ABySS seem to rely on branch-and-bound search
algorithms.

Common to most assemblers, a core set of features is apparent:

• Error detection and correction based on sequence composition of
the reads.

• Graph construction to represent reads and their shared sequence.
• Reduction of simple non-intersecting paths to single nodes in the
graph.

• Removal of error-induced paths. These are recognized as spurs or
bubbles.

• Collapse of polymorphism-induced complexity. This is recognized
as bubbles.

• Simplification of tangles using information outside the graph.
Individual reads or paired-end reads act as constraints on path
distance and outcome.

• Conversion of reduced paths to contigs and scaffolds.
• Reduction of alignments to a consensus sequence.

OLC and DBG are two robust approaches to assembly. Both rely to
some extent on a set of overlaps between the input reads. Both
represent the overlaps in a directed graph. Their different graph
representations are similar if not equivalent [66]. The OLC approach

Table 1
Feature comparison between de novo assemblers for whole-genome shotgun data from next-generation sequencing platforms. OLC refers to the overlap/layout/consensus
architecture. DBG refers to the de Bruijn graph architecture. The table is based on the literature cited in the text. It may not reflect the current state of each software package.

Algorithm Feature Greedy Assemblers OLC Assemblers DBG Assemblers

Modeled features of reads

Base substitutions Euler, AllPaths, SOAP
Homopolymer miscount CABOG
Concentrated error in 3′ end Euler
Flow space Newbler
Color space Shorty Velvet

Removal of erroneous reads

Based on K-mer frequencies Euler, Velvet, AllPaths
Based on K-mer freq and QV AllPaths
For multiple values of K AllPaths
By alignment to other reads CABOG
By alignment and QV SHARCGS

Correction of erroneous base calls

Based on K-mer frequencies Euler, SOAP
Based on Kmer freq and QV AllPaths
Based on alignments CABOG

Approaches to graph construction

Implicit SSAKE, SHARCGS, VCAKE
Reads as graph nodes CABOG, Newbler, Edena
K-mers as graph nodes Euler, Velvet, ABySS, SOAP
Simple paths as graph nodes AllPaths
Multiple values of K Euler
Multiple overlap stringencies SHARCGS

Approaches to graph reduction

Filter overlaps CABOG
Greedy contig extension SSAKE, SHARCGS, VCAKE
Collapse simple paths CABOG, Newbler Euler, Velvet, SOAP
Erosion of spurs CABOG, Edena Euler, Velvet, AllPaths, SOAP
Transitive overlap reduction Edena
Bubble smoothing Edena Euler, Velvet, SOAP
Bubble detection AllPaths
Reads separate tangled paths Euler, SOAP
Break at low coverage Velvet, SOAP
Break at high coverage CABOG Euler
High coverage indicates repeat CABOG Velvet
Special use of long reads Shorty Velvet

Graph partitions

Partition by K-mers ABySS
Partition by scaffolds AllPaths

Uses for mate pairs

Constrain path searches Euler, Velvet, AllPaths
Guide path selection Euler, Allpaths
Detect misassembled contigs CABOG, Shorty
Merge contigs or fill gaps CABOG, Shorty Velvet, ABySS, SOAP
Transitive link reduction CABOG SOAP
Detect, avoid repeat contigs CABOG Velvet, SOAP
Create scaffolds CABOG, Shorty Euler, Velvet, AllPaths, SOAP

324 J.R. Miller et al. / Genomics 95 (2010) 315–327

sink node. Each assembler searches the graph but each constrains its
searches for reasons of scale. A search in CABOG's overlap graph
follows only one outward edge per node. Searches in AllPaths and
Velvet examine local regions of the K-mer graph that are anchored by
large contigs and populated by direct and transitive paired-end
linkage. Euler and ABySS seem to rely on branch-and-bound search
algorithms.

Common to most assemblers, a core set of features is apparent:

• Error detection and correction based on sequence composition of
the reads.

• Graph construction to represent reads and their shared sequence.
• Reduction of simple non-intersecting paths to single nodes in the
graph.

• Removal of error-induced paths. These are recognized as spurs or
bubbles.

• Collapse of polymorphism-induced complexity. This is recognized
as bubbles.

• Simplification of tangles using information outside the graph.
Individual reads or paired-end reads act as constraints on path
distance and outcome.

• Conversion of reduced paths to contigs and scaffolds.
• Reduction of alignments to a consensus sequence.

OLC and DBG are two robust approaches to assembly. Both rely to
some extent on a set of overlaps between the input reads. Both
represent the overlaps in a directed graph. Their different graph
representations are similar if not equivalent [66]. The OLC approach

Table 1
Feature comparison between de novo assemblers for whole-genome shotgun data from next-generation sequencing platforms. OLC refers to the overlap/layout/consensus
architecture. DBG refers to the de Bruijn graph architecture. The table is based on the literature cited in the text. It may not reflect the current state of each software package.

Algorithm Feature Greedy Assemblers OLC Assemblers DBG Assemblers

Modeled features of reads

Base substitutions Euler, AllPaths, SOAP
Homopolymer miscount CABOG
Concentrated error in 3′ end Euler
Flow space Newbler
Color space Shorty Velvet

Removal of erroneous reads

Based on K-mer frequencies Euler, Velvet, AllPaths
Based on K-mer freq and QV AllPaths
For multiple values of K AllPaths
By alignment to other reads CABOG
By alignment and QV SHARCGS

Correction of erroneous base calls

Based on K-mer frequencies Euler, SOAP
Based on Kmer freq and QV AllPaths
Based on alignments CABOG

Approaches to graph construction

Implicit SSAKE, SHARCGS, VCAKE
Reads as graph nodes CABOG, Newbler, Edena
K-mers as graph nodes Euler, Velvet, ABySS, SOAP
Simple paths as graph nodes AllPaths
Multiple values of K Euler
Multiple overlap stringencies SHARCGS

Approaches to graph reduction

Filter overlaps CABOG
Greedy contig extension SSAKE, SHARCGS, VCAKE
Collapse simple paths CABOG, Newbler Euler, Velvet, SOAP
Erosion of spurs CABOG, Edena Euler, Velvet, AllPaths, SOAP
Transitive overlap reduction Edena
Bubble smoothing Edena Euler, Velvet, SOAP
Bubble detection AllPaths
Reads separate tangled paths Euler, SOAP
Break at low coverage Velvet, SOAP
Break at high coverage CABOG Euler
High coverage indicates repeat CABOG Velvet
Special use of long reads Shorty Velvet

Graph partitions

Partition by K-mers ABySS
Partition by scaffolds AllPaths

Uses for mate pairs

Constrain path searches Euler, Velvet, AllPaths
Guide path selection Euler, Allpaths
Detect misassembled contigs CABOG, Shorty
Merge contigs or fill gaps CABOG, Shorty Velvet, ABySS, SOAP
Transitive link reduction CABOG SOAP
Detect, avoid repeat contigs CABOG Velvet, SOAP
Create scaffolds CABOG, Shorty Euler, Velvet, AllPaths, SOAP

324 J.R. Miller et al. / Genomics 95 (2010) 315–327

Comparison	
 of	
 Assembly	
 tools	

Miller,	
 genomics,	
 2010,	
 95(6):315-­‐27	

sink node. Each assembler searches the graph but each constrains its
searches for reasons of scale. A search in CABOG's overlap graph
follows only one outward edge per node. Searches in AllPaths and
Velvet examine local regions of the K-mer graph that are anchored by
large contigs and populated by direct and transitive paired-end
linkage. Euler and ABySS seem to rely on branch-and-bound search
algorithms.

Common to most assemblers, a core set of features is apparent:

• Error detection and correction based on sequence composition of
the reads.

• Graph construction to represent reads and their shared sequence.
• Reduction of simple non-intersecting paths to single nodes in the
graph.

• Removal of error-induced paths. These are recognized as spurs or
bubbles.

• Collapse of polymorphism-induced complexity. This is recognized
as bubbles.

• Simplification of tangles using information outside the graph.
Individual reads or paired-end reads act as constraints on path
distance and outcome.

• Conversion of reduced paths to contigs and scaffolds.
• Reduction of alignments to a consensus sequence.

OLC and DBG are two robust approaches to assembly. Both rely to
some extent on a set of overlaps between the input reads. Both
represent the overlaps in a directed graph. Their different graph
representations are similar if not equivalent [66]. The OLC approach

Table 1
Feature comparison between de novo assemblers for whole-genome shotgun data from next-generation sequencing platforms. OLC refers to the overlap/layout/consensus
architecture. DBG refers to the de Bruijn graph architecture. The table is based on the literature cited in the text. It may not reflect the current state of each software package.

Algorithm Feature Greedy Assemblers OLC Assemblers DBG Assemblers

Modeled features of reads

Base substitutions Euler, AllPaths, SOAP
Homopolymer miscount CABOG
Concentrated error in 3′ end Euler
Flow space Newbler
Color space Shorty Velvet

Removal of erroneous reads

Based on K-mer frequencies Euler, Velvet, AllPaths
Based on K-mer freq and QV AllPaths
For multiple values of K AllPaths
By alignment to other reads CABOG
By alignment and QV SHARCGS

Correction of erroneous base calls

Based on K-mer frequencies Euler, SOAP
Based on Kmer freq and QV AllPaths
Based on alignments CABOG

Approaches to graph construction

Implicit SSAKE, SHARCGS, VCAKE
Reads as graph nodes CABOG, Newbler, Edena
K-mers as graph nodes Euler, Velvet, ABySS, SOAP
Simple paths as graph nodes AllPaths
Multiple values of K Euler
Multiple overlap stringencies SHARCGS

Approaches to graph reduction

Filter overlaps CABOG
Greedy contig extension SSAKE, SHARCGS, VCAKE
Collapse simple paths CABOG, Newbler Euler, Velvet, SOAP
Erosion of spurs CABOG, Edena Euler, Velvet, AllPaths, SOAP
Transitive overlap reduction Edena
Bubble smoothing Edena Euler, Velvet, SOAP
Bubble detection AllPaths
Reads separate tangled paths Euler, SOAP
Break at low coverage Velvet, SOAP
Break at high coverage CABOG Euler
High coverage indicates repeat CABOG Velvet
Special use of long reads Shorty Velvet

Graph partitions

Partition by K-mers ABySS
Partition by scaffolds AllPaths

Uses for mate pairs

Constrain path searches Euler, Velvet, AllPaths
Guide path selection Euler, Allpaths
Detect misassembled contigs CABOG, Shorty
Merge contigs or fill gaps CABOG, Shorty Velvet, ABySS, SOAP
Transitive link reduction CABOG SOAP
Detect, avoid repeat contigs CABOG Velvet, SOAP
Create scaffolds CABOG, Shorty Euler, Velvet, AllPaths, SOAP

324 J.R. Miller et al. / Genomics 95 (2010) 315–327

Comparison of the effect of various
coverage depths on average contig length

Lin Y et al. Bioinformatics 2011;27:2031-2037

Read	
 length	
 =35	
 Read	
 length	
 =75	

Couple	
 issues	

•  Try	
 different	
 assemblers	
 and	
 compare	
 their	

results.	

•  Need	
 a	
 big	
 fat	
 memory	
 computer	
 (from	
 16GB	

to	
 1TB).	

•  Running	
 *me	
 is	
 long:	
 from	
 several	
 hours	
 to	

several	
 days.	

	

Running	
 *me	

6

SOAPdenovo; in paired-end reads assembly of H.sap-3, Vel-

vet could not even finish the assembly.

• In general, SOAPdenovo and ABySS were more efficient

than other tools in terms of runtime and memory usage.

SSAKE consumed the greatest amount of computational re-

sources.

Table 6. Comparison of runtime and RAM in the computational
demand test

 Runtime (s)

Bench.Seq

(Length: bp)
E.coli
(4.6M)

C.ele
(20.9M)

H.sap-2
(50.3M)

H.sap-3
(100.5M)

SSAKE 2,776 --- --- ---
VCAKE 1,672 16,742 --- ---
Euler-sr 1,689 11,961 29,622 ---
Edena 895 8,450 17,043 ---
Velvet 205 1,003 2,786 6,098
ABySS 265 1,300 3,307 6,608

SE

SOAPdenovo 62 253 560 1,029
SSAKE 9,163 --- --- ---

Euler-sr 1,455 15,068 --- ---
Velvet 229 1,351 55,581 ---
ABySS 458 3,081 9,199 21,683

PE

SOAPdenovo 78 374 889 2,257

 RAM (MB)

Bench.Seq

(Length: bp)
E.coli
(4.6M)

C.ele
(20.9M)

H.sap-2
(50.3M)

H.sap-3
(100.5M)

SSAKE 9,933 --- --- ---

VCAKE 4,099 17,408 --- ---
Euler-sr 1,536 7,065 13,312 ---
Edena 1,741 7,557 30,720 ---
Velvet 1,229 4,045 9,830 22528
ABySS 1,126 3,993 8,909 18432

SE

SOAPdenovo 935 2,867 8,089 18227
SSAKE 16,384 --- --- ---

Euler-sr 1,638 7,578 --- ---
Velvet 1,331 5,324 30,720 ---
ABySS 950 4,505 9,830 18,432

PE

SOAPdenovo 1,638 5,939 10,342 19,456

Bench.Seq: Benchmark Sequence; s: second; MB: megabytes; SE: Single-End Reads

Assembly; PE: Paired-End Reads Assembly. “---” denotes the RAM of computer is

not enough or runtime is too long (greater than 10 days) to get assembly results.

In this test, we also analyzed N50 lengths, sequence coverage,

and assembly error rate. The results were consistent with several

conclusions in previous sections (Supplemental Table 16).

4 CONCLUSIONS AND DISCUSSIONS

This study compared seven publically available and commonly

used de novo assembly tools: SSAKE, VCAKE, Euler-sr, Edena,

Velvet, ABySS and SOAPdenovo. These tools are specifically

designed to assemble large numbers of short reads generated by

next-generation sequencing platforms.

In analyzing these tools, stronger performance is indicated by

higher N50 values, higher sequence coverage, lower assembly

error rates, and lower computational resource consumption (to

enable assembly of larger genomes). The performance of different

assembly tools was dependent, to some extent, on the test condi-

tions. Based on the results of our investigation, we propose the

following guidelines for tool selection. Generally, SSAKE, Edena

and Euler-sr need higher depths of coverage (~50x) than Velvet,

ABySS and SOAPdenovo(~30x) to generate higher N50 lengths;

SOAPdenovo was the fastest of all tools, and ABySS almost al-

ways consumed the least memo ry space. We have developed a

tentative reference/guidelines for selecting optimal de novo tools

under varying conditions (Table 7). Specific co mments regarding

the performance of individual tools under different conditions are

summarized below.

Table 7. Recommendations for de novo tool selection under vary-
ing conditions

Read Property Small Genome Large Genome

 GC Read
High
N50

High
SC

Low
AER

High
N50

High
SC

Low
AER

Short Eu, SS
Ed, AB,
Ve

Eu, SO,
Ed

Ed, AB,
Ve Low

Long SS, SO

SS

AB, Ve SO

SO, Ed
AB, Ve

AB, Ve

Short Eu, SO
AB, Ve,
Ed

SO, Eu
AB, Ve,
Ed

SE

High
Long

SO, Ed,
AB, Ve

SS, SO
AB, Ve SO, Ed

SO
AB, Ve

Short
SO, SS,
AB, Ve

AB, SS,
Ve, SO

Low
Long SO, SS

AB, SS,
SO, Ve

SO, AB,
Ve

AB,
SO, Ve

Short SO SO
PE

High
Long

SO, AB,
Ve

AB

AB, Ve,
SO

SO, AB,
Ve

AB

AB, Ve,
SO

Requirements of assembly performance includes High N50, High Sequence Coverage

(SC), Low Assembly Error rate (AER). For different requirements, We recommend

some de novo tools with order of priority according to properties of sequence reads,

including s ingle-end/paired-end, GC content, read length and sequence length. SE,

Single end reads; PE, Paired end reads; Eu, Euler-sr; SS, SSAKE; Ed, Edena; AB,

ABySS; Ve, Velvet; SO, SOAPdenovo.

SSAKE provided good sequence coverage, and also generated

good N50 lengths when assembling sequences with low GC con-

tent. On the other hand, SSAKE tended to generate more assembly

errors and needed more depth of coverage to reach DCAP than

most of the other tools tested. The time and memory usage of

SSAKE was also the highest of the tools tested. Our results indi-

cated that assembly of large sequences (e.g. Homo sapiens) was

not feasible with SSAKE.

VCAKE produced the shortest N50 lengths in most situations,

and the sequence coverage by VCAKE was comparable to

SSAKE. VCAKE also generated many assembly errors, even high-

er than that of SSAKE under certain test conditions. The computa-

tional resources required to run VCAKE were a little less than

those required for SSAKE.

In assembling single-end short reads, Euler-sr produced the

longest N50 values, but it also generated high assembly error rates,

comparable to that of SSAKE. In addition, sequence coverage of

Euler-sr was the lowest under most test situations. Euler-sr con-

sumed intermediate computational resources.

Under most conditions tested, Velvet and ABySS show similar

assembly performance; they generated similar N50 lengths, their

DCAPs were relatively low, and they required acceptable compu-

tational resources. Consequently, it is feasible to use these tools for

assembling large sequences, such as those obtained for Homo sa-

 at U
niversity of N

ebraka-Lincoln Libraries on January 28, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

Lin Y et al. Bioinformatics 2011;27:2031-2037

‘–’	
 denotes	
 run*me	
 is	
 too	
 long	
 (>10	
 days)	
 to	
 get	
 assembly	
 results	

RAM	
 used	

6

SOAPdenovo; in paired-end reads assembly of H.sap-3, Vel-

vet could not even finish the assembly.

• In general, SOAPdenovo and ABySS were more efficient

than other tools in terms of runtime and memory usage.

SSAKE consumed the greatest amount of computational re-

sources.

Table 6. Comparison of runtime and RAM in the computational
demand test

 Runtime (s)

Bench.Seq

(Length: bp)
E.coli
(4.6M)

C.ele
(20.9M)

H.sap-2
(50.3M)

H.sap-3
(100.5M)

SSAKE 2,776 --- --- ---
VCAKE 1,672 16,742 --- ---
Euler-sr 1,689 11,961 29,622 ---
Edena 895 8,450 17,043 ---
Velvet 205 1,003 2,786 6,098
ABySS 265 1,300 3,307 6,608

SE

SOAPdenovo 62 253 560 1,029
SSAKE 9,163 --- --- ---

Euler-sr 1,455 15,068 --- ---
Velvet 229 1,351 55,581 ---
ABySS 458 3,081 9,199 21,683

PE

SOAPdenovo 78 374 889 2,257

 RAM (MB)

Bench.Seq

(Length: bp)
E.coli
(4.6M)

C.ele
(20.9M)

H.sap-2
(50.3M)

H.sap-3
(100.5M)

SSAKE 9,933 --- --- ---

VCAKE 4,099 17,408 --- ---
Euler-sr 1,536 7,065 13,312 ---
Edena 1,741 7,557 30,720 ---
Velvet 1,229 4,045 9,830 22528
ABySS 1,126 3,993 8,909 18432

SE

SOAPdenovo 935 2,867 8,089 18227
SSAKE 16,384 --- --- ---

Euler-sr 1,638 7,578 --- ---
Velvet 1,331 5,324 30,720 ---
ABySS 950 4,505 9,830 18,432

PE

SOAPdenovo 1,638 5,939 10,342 19,456

Bench.Seq: Benchmark Sequence; s: second; MB: megabytes; SE: Single-End Reads

Assembly; PE: Paired-End Reads Assembly. “---” denotes the RAM of computer is

not enough or runtime is too long (greater than 10 days) to get assembly results.

In this test, we also analyzed N50 lengths, sequence coverage,

and assembly error rate. The results were consistent with several

conclusions in previous sections (Supplemental Table 16).

4 CONCLUSIONS AND DISCUSSIONS

This study compared seven publically available and commonly

used de novo assembly tools: SSAKE, VCAKE, Euler-sr, Edena,

Velvet, ABySS and SOAPdenovo. These tools are specifically

designed to assemble large numbers of short reads generated by

next-generation sequencing platforms.

In analyzing these tools, stronger performance is indicated by

higher N50 values, higher sequence coverage, lower assembly

error rates, and lower computational resource consumption (to

enable assembly of larger genomes). The performance of different

assembly tools was dependent, to some extent, on the test condi-

tions. Based on the results of our investigation, we propose the

following guidelines for tool selection. Generally, SSAKE, Edena

and Euler-sr need higher depths of coverage (~50x) than Velvet,

ABySS and SOAPdenovo(~30x) to generate higher N50 lengths;

SOAPdenovo was the fastest of all tools, and ABySS almost al-

ways consumed the least memo ry space. We have developed a

tentative reference/guidelines for selecting optimal de novo tools

under varying conditions (Table 7). Specific co mments regarding

the performance of individual tools under different conditions are

summarized below.

Table 7. Recommendations for de novo tool selection under vary-
ing conditions

Read Property Small Genome Large Genome

 GC Read
High
N50

High
SC

Low
AER

High
N50

High
SC

Low
AER

Short Eu, SS
Ed, AB,
Ve

Eu, SO,
Ed

Ed, AB,
Ve Low

Long SS, SO

SS

AB, Ve SO

SO, Ed
AB, Ve

AB, Ve

Short Eu, SO
AB, Ve,
Ed

SO, Eu
AB, Ve,
Ed

SE

High
Long

SO, Ed,
AB, Ve

SS, SO
AB, Ve SO, Ed

SO
AB, Ve

Short
SO, SS,
AB, Ve

AB, SS,
Ve, SO

Low
Long SO, SS

AB, SS,
SO, Ve

SO, AB,
Ve

AB,
SO, Ve

Short SO SO
PE

High
Long

SO, AB,
Ve

AB

AB, Ve,
SO

SO, AB,
Ve

AB

AB, Ve,
SO

Requirements of assembly performance includes High N50, High Sequence Coverage

(SC), Low Assembly Error rate (AER). For different requirements, We recommend

some de novo tools with order of priority according to properties of sequence reads,

including s ingle-end/paired-end, GC content, read length and sequence length. SE,

Single end reads; PE, Paired end reads; Eu, Euler-sr; SS, SSAKE; Ed, Edena; AB,

ABySS; Ve, Velvet; SO, SOAPdenovo.

SSAKE provided good sequence coverage, and also generated

good N50 lengths when assembling sequences with low GC con-

tent. On the other hand, SSAKE tended to generate more assembly

errors and needed more depth of coverage to reach DCAP than

most of the other tools tested. The time and memory usage of

SSAKE was also the highest of the tools tested. Our results indi-

cated that assembly of large sequences (e.g. Homo sapiens) was

not feasible with SSAKE.

VCAKE produced the shortest N50 lengths in most situations,

and the sequence coverage by VCAKE was comparable to

SSAKE. VCAKE also generated many assembly errors, even high-

er than that of SSAKE under certain test conditions. The computa-

tional resources required to run VCAKE were a little less than

those required for SSAKE.

In assembling single-end short reads, Euler-sr produced the

longest N50 values, but it also generated high assembly error rates,

comparable to that of SSAKE. In addition, sequence coverage of

Euler-sr was the lowest under most test situations. Euler-sr con-

sumed intermediate computational resources.

Under most conditions tested, Velvet and ABySS show similar

assembly performance; they generated similar N50 lengths, their

DCAPs were relatively low, and they required acceptable compu-

tational resources. Consequently, it is feasible to use these tools for

assembling large sequences, such as those obtained for Homo sa-

 at U
niversity of N

ebraka-Lincoln Libraries on January 28, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

Lin Y et al. Bioinformatics 2011;27:2031-2037 ‘–’	
 denotes	
 the	
 RAM	
 of	
 computer	
 is	
 not	

enough	

Whole	
 genome	
 sequencing	

•  De	
 Novo	
 whole	
 genome	
 sequencing	

•  Mapping	
 assembly	
 (Reference-­‐guided	

assembly)	
 (Resequencing)	

	

Paired-­‐end	
 sequencing	

•  Paired-­‐End	
 sequencing	
 (for	
 Mate-­‐pairs)	

–  Sequence	
 two	
 ends	
 of	
 a	
 fragment	
 of	
 known	
 size.	

–  Currently	
 fragment	
 length	
 (insert	
 size)	
 can	
 range	
 from	
 200	

bps	
 –	
 10,000	
 bps	

–  Paired-­‐end	
 sequencing	
 is	
 helpful	
 for	
 assembly	
 and	
 loca*ng	

repeat.	
 It	
 also	
 can	
 detect	
 rearrangements,	
 including	

inser*ons	
 and	
 dele*ons	
 (indels)	
 and	
 inversions.	
 	

–  As	
 paired	
 end	
 reads	
 are	
 more	
 likely	
 to	
 align	
 to	
 a	
 reference,	

the	
 quality	
 of	
 the	
 en*re	
 data	
 set	
 improves	

Paired-­‐end	
 sequencing	

by	
 Illumina	

Both	
 the	
 forward	
 and	
 reverse	

template	
 strands	
 of	
 each	

cluster	
 	
 can	
 be	
 sequenced.	

A	
 simple	
 modifica*on	
 to	
 the	

standard	
 single-­‐read	
 DNA	

library	
 prepara*on.	
 	

Solid-­‐phase	
 amplifica*on	
 and	

Cyclic	
 reversible	
 termina*on	
 	
 	

Mate-­‐pair	
 libraries	

Berglund	
 et	
 al.	
 Inves/ga/ve	
 Gene/cs	
 2011	
 2:23	

adaptor	

Use	
 computer	
 sogware	
 to	

remove	
 adaptor	
 sequences	

bio/nylated	

Circulariza*on	

De	
 Novo	
 sequencing	

•  New	
 species/strains	

•  Challenge	
 of	
 assembly	
 with	
 short	
 reads	

–  8x	
 coverage	
 of	
 3	
 GB	
 genome	
 =	
 750	
 million	
 fragments	

–  Exponen*al	
 problem	
 for	
 all-­‐vs-­‐all	
 algorithm	
 (overlap)	

•  Big	
 problem	
 with	
 repeats	

•  Assemble	
 con*gs,	
 fill	
 gaps	

•  Paired-­‐end	
 reads	
 are	
 essen*al	

Shotgun	
 Sequencing	

•  Breaking	
 the	
 genome	
 into	
 a	
 collec*on	
 of	
 small	

DNA	
 fragments	
 	

•  Sequencing.	
 	

•  Recons*tute	
 the	
 genome.	

Shotgun	
 sequencing	

is	
 a	
 laboratory	

technique	
 for	

determining	
 the	
 DNA	

sequence	
 of	
 an	

organism's	
 genome.	
 	

Assembly Pipeline
Preprocess
& estimate

Assembling	

Scaffolding	

Repeat
Removing	

Shotgun sequencing
statistics

34

Typical contig coverage

1
2
3
4
5
6 C

ov
er

ag
e

Contig

Reads

Imagine raindrops on a sidewalk:
It can be modeled by Poisson distribution

L = read length
G = genome size
N = number of reads
c = coverage= (NL / G) Average	
 coverage	

35

Lander-Waterman statistics

L = read length
G = genome size
N = number of reads
c = coverage =(NL / G)
T = minimum detectable overlap
σ = 1 – T/L

E(# of islands) = Ne-cσ
E(island size) = L((ecσ – 1) / c + 1 – σ)
contig = island with 2 or more reads

Smith-­‐Waterman	
 algorithm	
 	
 for	
 sequence	
 comparison	

36

Example

c N #islands #contigs bases not in
any read

bases not in
contigs

1 1,667 655 614 698 367,806

3 5,000 304 250 121 49,787

5 8,334 78 57 20 6,735

8 13,334 7 5 1 335

Genome size: 1 Mbp Read Length: 600

Experimental data
X

coverage # ctgs % > 2X avg ctg size (L-W) max ctg size # ORFs

1 284 54 1,234 (1,138) 3,337 526

3 597 67 1,794 (4,429) 9,589 1,092

5 548 79 2,495 (21,791) 17,977 1,398

8 495 85 3,294 (302,545) 64,307 1,762

complete 1 100 1.26 M 1.26 M 1,329

Numbers based on artificially chopping up the genome of
Wolbachia pipientis dMel

Errors	
 in	
 Lander-­‐Waterman	
 Es*mate	

Lander-­‐Waterman	
 has	
 errors:	

• 	
 repeats	

• 	
 GC/AT	
 rich	
 regions	

• 	
 other	
 low	
 complexity	
 regions	

• 	
 cloning	
 biases	
 in	
 shotgun	
 libraries	

Expected average contig length for a range of different read lengths and coverage values.

Schatz M C et al. Genome Res. 2010;20:1165-1173 Copyright © 2010 by Cold Spring Harbor Laboratory Press

Read	
 length	

Dog:	
 2.5	
 billion	
 bp	

Panda:	
 3	
 billion	
 bp	

Schatz M C et al. Genome Res. 2010;20:1165-1173

One	
 more	
 example	

For	
 yeast	
 12Mbp	

• 	
 read	
 length:	
 200-­‐400	
 bp	

• 	
 coverage:	
 50X	
 	
 	
 	
 (how	
 many	
 reads	
 do	
 we	

need?)	

• 	
 paired-­‐end	
 read	
 insert	
 size:	
 8kb	
 (beYer	
 to	

make	
 mul*ple	
 libraries	
 with	
 different	
 insert	

sizes.)	

Assembly Pipeline
Preprocess
& estimate

Assembling	

Scaffolding	

Repeat
Removing	

•  Velvet:	
 	
 small	
 genomes	

•  ABySS:	
 large	
 genome	

Scaffolding	

•  Scaffolding	
 groups	
 con*gs	
 into	
 subsets	

with	
 known	
 order	
 and	
 orienta*on.	

•  Nodes	
 are	
 con*gs	

•  Directed	
 edge	
 is	
 between	
 two	
 nodes	
 if	

they	
 are	
 adjacent	
 in	
 the	
 genome.	

	

Contig 1 Contig 2	

Scaffolding	

•  Mate	
 pairs	
 ,	
 if	
 in	
 different	
 con*gs,	
 have	
 a	

chance	
 of	
 being	
 neighbors.	

	

Scaffolding	
 	

Align	
 reads	
 from	
 short	

insert	
 or	
 long	
 insert	

library	

Join	
 con*gs	
 using	
 evidence	
 from	

paired	
 end	
 data	

Con*gs	
 from	
 assembly	

Scaffold	

Scaffolding	
 Algorithm	

•  Find	
 all	
 connected	
 components	

•  Find	
 a	
 consistent	
 orienta*on	
 for	
 all	
 nodes	
 in	
 the	

graph	
 (all	
 con*gs).	
 	

– Nodes	
 (con*gs)	
 have	
 two	
 types	
 of	
 edges	

• Same	
 orienta*on	

• Different	
 orienta*on	

– Make	
 sure	
 linked	
 con*gs	
 have	
 consistent	

orienta*on.	

– Op*miza*on	
 problem	
 –	
 find	
 the	
 smallest	
 number	

of	
 edges	
 to	
 be	
 removed	
 so	
 that	
 	
 all	
 con*gs	
 have	

consistent	
 orienta*on.	

•  Find	
 the	
 Hamiltonian	
 path	
 again.	

Scaffolding	
 sogware	

•  Some	
 assembly	
 sogware,	
 such	
 velvet,	
 can	
 do	
 scaffolding	

as	
 well.	

•  Bambus	
 -­‐	
 hYp://www.cbcb.umd.edu/sogware/bambus	

•  SSPACE	
 -­‐	

hYp://www.baseclear.com/landingpages/basetools-­‐a-­‐
wide-­‐range-­‐of-­‐bioinforma*cs-­‐solu*ons/sspacev12/	

•  GRASS	
 -­‐	
 hYp://code.google.com/p/tud-­‐scaffolding/	
 	

	

Addi*onal	
 techniques	
 for	
 orienta*on	

•  Physical	
 mapping.	
 Using	
 informa*on	
 from	
 Bacterial	

Ar*ficial	
 Chromosome	
 (BAC)-­‐based	
 physical	
 maps.	

Physical	
 maps	
 are	
 built	
 by	
 clustering	
 together	
 of	

BACs	
 sharing	
 por*ons	
 of	
 a	
 DNA	
 “fingerprint,”	
 which	

is	
 a	
 paYern	
 of	
 DNA	
 fragments	
 of	
 various	
 sizes.	

•  Using	
 markers	
 along	
 a	
 DNA	
 strand	
 as	
 independent	

informa*on	
 for	
 scaffolding	
 sogware.	
 Markers	
 are	

known	
 sequences	
 of	
 nucleo*des	
 and	
 tags.	
 Markers	

are	
 searched	
 in	
 the	
 con*gs.	

•  Using	
 large	
 scale	
 maps	
 of	
 landmarks	
 that	
 lie	
 along	

the	
 the	
 chromosomal	
 DNA.	

	

Scaffolding	

•  Addi*onal	
 informa*on	
 is	
 also	
 useful:	

– Sequences	
 of	
 closely	
 related	
 organisms	
 are	
 also	

used	
 as	
 scaffolding	
 informa*on.	

	
 	
 	
 	
 Example:	
 aligning	
 scaffolds	
 of	
 a	
 mouse	
 genome	
 to	

the	
 human	
 genome	

Scaffolding:	
 Issues	

•  Errors	
 in	
 length	
 of	
 inserts	
 (affec*ng	
 distances	
 between	

clone	
 mates)	

•  Physical	
 mapping	
 is	
 error	
 prone.	

•  first	
 builds	
 a	
 sequence	
 based	
 on	
 linking	
 informa*on	

with	
 high	
 confidence,	
 then	
 factors	
 in	
 linking	
 informa*on	

with	
 lower	
 confidence.	

	

Assembly Pipeline
Preprocess
& estimate

Assembling	

Scaffolding	

Repeat
Removing	

The variability in repetitiveness among
species species.

Schatz M C et al. Genome Res. 2010;20:1165-1173 Copyright © 2010 by Cold Spring Harbor Laboratory Press

The k-mer uniqueness ratio for five well-known
organisms and one single-celled human parasite.

The	
 ra*o	
 ==	
 	
 the	

percentage	
 of	
 the	

genome	
 that	
 is	

covered	
 by	
 unique	

sequences	
 of	
 length	

k	
 or	
 longer.	

The	
 figure	
 shows	
 how	

much	
 of	
 each	
 genome	

would	
 be	
 covered	
 by	
 k-­‐
mers	
 (reads)	
 that	
 occur	

exactly	
 once.	

Repeat Control Issues	

•  Assembly	
 programs	
 should	
 detect	
 repeats	
 in	

the	
 assembly	
 process	
 and	
 not	
 ager.	
 	

– Incorrect	
 genome	
 reconstruc*on	

•  Assemblers	
 should	
 try	
 to	
 resolve	
 correctly	
 as	

many	
 repeats	
 as	
 possible.	

– Avoid	
 intensive	
 human	
 labor	

54

Repeat Control – When? & How?
•  pre-assembly: find fragments that belong to repeats

–  statistically (most existing assemblers)
–  repeat database (RepeatMasker)

•  during assembly: detect "tangles" indicative of repeats
(Pevzner, Tang, Waterman 2001)

•  post-assembly: find repetitive regions and potential
mis-assemblies.
–  Reputer, RepeatMasker
–  "unhappy" mate-pairs (too close, too far, mis-

oriented)

sequencing error (2d for positions within a distance d ! l from the
endpoint of the reads). A greedy approach for the Error Correction
Problem is to look for error corrections in the reads that reduce the
size of Sl by 2l (or 2d for positions close to the endpoints). This
simple procedure already eliminates 86.5% of the errors in se-
quencing reads. EULER uses a more involved approach that elimi-
nates 97.7% of sequencing errors and transforms the original
sequencing data with 4.8 errors per read on average into almost
error-free data with 0.11 errors per read on average (22).

A word of caution is in place. Our error-correction procedure is
not perfect while deciding which nucleotide, among, let us say, A or
T is correct in a given l-tuple within a read. If the correct nucleotide
is A, but T is also present in some reads covering the same region,
the error-correction procedure may assign T instead of A to all
reads, i.e., to introduce an error rather than to correct it. Because
our algorithm sometimes introduces errors, data corruption is
probably a more appropriate name for this approach! Introducing
an error in a read is not such a bad thing, as long as the errors from
overlapping reads covering the same position are consistent (i.e.,
they correspond to a single mutation in a genome). An important
insight is that, at this stage of the algorithm, we do not care much
whether we correct or introduce errors in the sequencing reads.
From an algorithmic perspective, introducing a consistent error that
simply corresponds to changing a nucleotide in a final assembly is
not a big deal. It is much more important to make sure that we
eliminate a competition between A and T at this stage, thus
reducing the complexity of the de Bruijn graph. In this way, we
eliminate false edges in our graph and deal with this problem later:
the correct nucleotides are easily reconstructed either by a majority
rule or by a variation of the Churchill–Waterman algorithm (23).
For the NM sequencing project, orphan elimination corrects
234,410 errors and introduces 1,452 errors.

Eulerian Superpaths
Given a set of reads S " {s1, . . ., sn}, define the de Bruijn graph
G(Sl) with vertex set Sl#1 (the set of all (l # 1)-tuples from S) as
follows. An (l # 1)-tuple v ! Sl#1 is joined by a directed edge with
an (l # 1)-tuple w ! Sl#1, if Sl contains an l-tuple for which the first
l # 1 nucleotides coincide with v and the last l # 1 nucleotides
coincide with w. Each l-tuple from Sl corresponds to an edge in G.
If S contains the only sequence s1, then this sequence corresponds
to a path visiting each edge of the de Bruijn graph, a Chinese
Postman path (20). The Chinese Postman Problem is closely related
to the problem of finding a path visiting every edge of a graph
exactly once, an Eulerian Path Problem (24). One can transform the
Chinese Postman Problem into the Eulerian Path Problem by
introducing multiplicities of edges in the de Bruijn graph. For
example, one can substitute every edge in the de Bruijn graph by
k parallel edges, where k is the number of times the edge is used in
the Chinese Postman path. If S contains the only sequence s1, this
operation creates k ‘‘parallel’’ edges for every l-tuple repeating k
times in s1 (23). Finding Eulerian paths is a well known problem that
can be efficiently solved in linear time. We assume that S contains
a complement of every read and that the de Bruijn graph can be
partitioned into two subgraphs (the ‘‘canonical’’ one and its reverse
complement).

With real data, the errors hide the correct path among many
erroneous edges. The graph corresponding to the error-free data
from the NM project has 4,039,248 vertices (roughly twice the
length of the genome), whereas the graph corresponding to real
sequencing reads has 9,474,411 vertices (for 20-tuples). After the
error-correction procedure, this number is reduced to 4,081,857.

A vertex v is called a source if indegree(v) " 0, a sink if
outdegree(v) " 0, and a branching vertex if indegree(v)!
outdegree(v) $ 1. For the NM genome, the de Bruijn graph has
502,843 branching vertices for original reads (for l-tuple size 20).
Error corrections simplify this graph and lead to a graph with 382
sources and sinks and 12,175 branching vertices. Because the de

Bruijn graph gets very complicated even in the error-free case,
taking into account the information about which l-tuples belong to
the same reads (that was lost after the construction of the de Bruijn
graph) helps us to untangle this graph.

A path v1 . . . vn in the de Bruijn graph is called a repeat if
indegree(v1) $ 1, outdegree(vn) $ 1, and indegree (v1) "
outdegree(vi) " 1 for 1 ! i ! n # 1 (Fig. 3). Edges entering the
vertex v1 are called entrances into a repeat, whereas edges
leaving the vertex vn are called exits from a repeat. An Eulerian
path visits a repeat a few times, and every such visit defines a
pairing between an entrance and an exit. Repeats may create
problems in fragment assembly, because there are a few en-
trances in a repeat and a few exits from a repeat, but it is not clear
which exit is visited after which entrance in the Eulerian path. A
read-path covers a repeat if it contains an entrance into and an
exit from this repeat. Every covering read-path reveals some
information about the correct pairings between entrances and
exits. A repeat is called a tangle if there is no read-path
containing this repeat (Fig. 3). Tangles create problems in
fragment assembly, because pairings of entrances and exits in a
tangle cannot be resolved via the analysis of read-paths. To
address this issue, we formulate the following generalization of
the Eulerian Path Problem:

Eulerian Superpath Problem. Given an Eulerian graph and a
collection of paths in this graph, find an Eulerian path in this
graph that contains all these paths as subpaths.

To solve the Eulerian Superpath Problem, we transform both
the graph G and the system of paths ! in this graph into a new
graph G1 with a new system of paths !1. Such transformation is
called equivalent if there exists a one-to-one correspondence
between Eulerian superpaths in (", !) and ("1, !1). Our goal is
to make a series of equivalent transformations

%", !& 3 %"1 , !1& 3 · · · 3 %"k , !k&

that lead to a system of paths !k, with every path being a single
edge. Because all transformations on the way from (", !) to
("k, !k) are equivalent, every solution of the Eulerian Path
Problem in ("k, !k) provides a solution of the Eulerian Super-
path Problem in (", !).

Below, we describe a simple equivalent transformation that solves
the Eulerian Superpath Problem in the case when the graph G has
no multiple edges. Let x " (vin, vmid) and y " (vmid, vout) be two
consecutive edges in graph G, and let !x,y be a collection of all paths
from ! that include both these edges as a subpath. Informally,
x,y-detachment bypasses the edges x and y via a new edge z and
directs all paths in !x,y through z, thus simplifying the graph.
However, this transformation affects other paths and needs to be
defined carefully. Define !3x as a collection of paths from ! that
end with x and !y3 as a collection of paths from ! that start with
y. The x, y-detachment is a transformation that adds a new edge z "
(vin, vout) and deletes the edges x and y from G (Fig. 4a). This
detachment alters the system of paths ! as follows: (i) substitute z

Fig. 3. A repeat v1 . . . vn and a system of paths overlapping with this repeat.
The uppermost path contains the repeat and defines the correct pairing
between the corresponding entrance and exit. If this path were not present,
the repeat v1 . . . vn would become a tangle.

Pevzner et al. PNAS ! August 14, 2001 ! vol. 98 ! no. 17 ! 9751

G
EN

ET
IC

S
A

PP
LI

ED
M

A
TH

EM
A

TI
CS

Detec*ng	
 repeats	

pre-assembly: 	

•  Sta*s*cal	
 methods	

– Assemblers assume that reads are sampled

uniformly at random.
– Significant deviations from average coverage

flagged as repeats.
–  frequent k-mers are ignored
– “arrival” rate of reads in contigs compared

with theoretical value.
(e.g., 800 bp reads & 8x coverage - reads "arrive" every 100 bp)

Detec*ng	
 repeats	

during assembly	

•  Example:	
 In	
 Euler	
 assembly	
 program	

– Finds	
 repeats	
 by	
 complex	
 parts	
 of	
 the	
 graph	

constructed	
 during	
 the	
 assembly	
 process.	

– Researchers	
 look	
 into	
 these	
 complex	
 areas	
 to	
 try	

and	
 resolve	
 repeats.	

– Assemblers	
 can	
 use	
 clone	
 mate	
 informa*on	
 to	

find	
 incorrect	
 assemblies.	
 This	
 is	
 based	
 on	
 finding	

clone-­‐mate	
 pairs	
 too	
 close	
 or	
 too	
 far	
 from	
 one	

another.	
 (“unhappy”	
 mate-­‐pairs)	

57

Detec*ng	
 repeats	

post-assembly: Mis-assembled repeats

 a b c

a c
b

a b c d
I II III

I

II

III
a

b c

d

b c

a b d c e f

I II III IV

I III II IV

a d b e c f

a

collapsed tandem excision

rearrangement

58

Repeat resolution
•  Assemblers deduce that areas covered by a large

number of reads may show an over-collapsed

repeat.

•  Problems with this - samples are not uniformly

distributed (for example, non-random libraries and

poor clonability regions). leads to false positives.

•  Repeats with low copy number are missed - leads

to false negatives.

Repeat resolution
•  Techniques	
 for	
 repairing	
 sequencing	
 errors	
 during	
 repeat	

resolu*on	

– find	
 clusters	
 of	
 reads	
 where	
 the	
 clusters	
 share	

differences.	
 	

•  For	
 example,	
 four	
 reads	
 contain	
 an	
 A	
 ,	
 four	
 contain	
 a	
 B.	

it	
 is	
 likely	
 that	
 the	
 first	
 four	
 reads	
 are	
 from	
 one	
 copy	

and	
 the	
 last	
 four	
 from	
 a	
 different	
 one.	

– Drawbacks	
 are	
 if	
 certain	
 areas	
 of	
 the	
 sequence	

have	
 low	
 coverage.	
 	

– Difficult	
 to	
 separate	
 from	
 true	
 polymorphism	

	

Discussion:	

Virtual	
 genome	
 assembly	

•  Plant	
 mitochondrion	
 genome	
 500,000	
 bp	
 	
 	
 	
 DNA	
 	
 	
 	
 	
 circular	

•  How	
 can	
 you	
 get	
 mitochondria	
 DNA?	
 What	
 problems	
 do	
 we	
 need	
 to	
 concern	
 for	

this	
 step?	

•  For	
 DNA	
 fragmen*ng,	
 what	
 sizes	
 of	
 DNA	
 fragments	
 will	
 you	
 use?	
 A.	
 1Kbp,	
 B.	
 5kbp,	

C.	
 both	

•  Pair-­‐ended	
 or	
 single	
 ended?	

•  What	
 depth	
 do	
 you	
 sequence?	
 how	
 many	
 lanes	
 do	
 you	
 need	
 if	
 you	
 use	
 illumina	

hiseq	
 2000?	
 or	
 how	
 many	
 reads	
 do	
 you	
 need	
 to	
 get?	
 	

•  Which	
 assembler	
 will	
 you	
 use?	
 Why?	

•  What	
 computer	
 do	
 you	
 used	
 to	
 do	
 assemble?	
 A.	
 4GB	
 laptop	
 B.	
 50GB	
 worksta*on	

C.	
 computer	
 cluster	
 in	
 HCC	

•  According	
 to	
 your	
 es*mate,	
 how	
 long	
 does	
 it	
 take	
 for	
 assemble?	
 A.	
 30	
 minutes	
 B.2	

hours	
 C.	
 12	
 hours	
 D.	
 4	
 days	

•  What	
 sogware	
 do	
 you	
 used	
 to	
 do	
 scaffold?	
 how	
 long	
 does	
 it	
 take?	
 	

•  What	
 is	
 longest	
 gap	
 in	
 one	
 scaffold?	
 How	
 do	
 you	
 fill	
 gaps?	

•  How	
 do	
 you	
 determine	
 if	
 your	
 assembled	
 genome	
 is	
 good	
 enough?	

•  how	
 do	
 you	
 annotate	
 genes?	
 	

On	
 Thursday,	
 Jan	
 30.	

