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Main	  algorithm	  used:	  
•  Greedy	  algorithms	  
•  Overlap	  Layout	  Consensus	  
•  De	  brujin	  graphs	  



Greedy Assembly 

•  Build a rough map of 
fragment overlaps 
(pairwise alignment) 

•  Pick the largest scoring 
overlap 

•  Merge the two fragments 
•  Repeat until no more 

merges can be done 



Greedy Assembly 
•  Advantages:	  

–  Simple	  and	  easy	  to	  implement	  	  
–  effec*ve	  

•  Disadvantages	  
–  Since	  local	  informa*on	  is	  considered	  at	  each	  step,	  the	  
assembler	  can	  be	  easily	  confused	  by	  complex	  repeats,	  
leading	  to	  mis-‐assemblies.	  

–  Local	  approach.	  Easy	  to	  be	  trapped	  into	  a	  local	  
op*mal	  solu*on	  (local	  minimum).	  

–  Early	  mistakes	  create	  bad	  assemblies.	  

R1	   R2	  

R5	  

R3	   R4	  



Try	  to	  find	  the	  Hamiltonian	  path:	  
•  A	  path	  in	  the	  graph	  contains	  each	  node	  exactly	  once.	  
•  Following	  the	  Hamiltonian	  path,	  combine	  the	  
overlapping	  sequences	  in	  the	  nodes	  into	  the	  
sequence	  of	  the	  genome	  

•  Computa*onally	  expensive	  (NP-‐hard	  problem)	  

CGTAGTGGCAT 

ATTCACGTAG 



Overlap-layout-consensus 
•  BeYer	  than	  Greedy	  algorithm.	  It	  can	  generate	  correct	  

order	  of	  con*gs	  that	  the	  Greedy	  algorithms	  may	  have	  
errors.	  

•  No	  efficient	  algorithm	  to	  find	  the	  Hamiltonian	  path	  
•  Short	  fragment	  length	  =	  very	  small	  overlap	  therefore	  

many	  false	  overlaps.	  
•  Overlap	  discovery	  is	  sensi*ve	  to	  minimum	  overlap	  length	  

and	  minimum	  percent	  iden*ty	  required	  for	  an	  overlap.	  
•  Overlap	  discovery	  is	  also	  *me	  consuming.	  
•  Large	  number	  of	  reads	  +	  short	  overlap	  +	  higher	  error	  are	  

challenging	  for	  the	  overlap	  -‐	  layout	  -‐	  consensus	  approach	  
•  Can’t	  assemble	  repeat	  longer	  than	  read	  length	  
•  It	  is	  mostly	  used	  with	  Sanger	  or	  454	  data.	  



Main	  algorithm	  used:	  
•  Greedy	  algorithms	  
•  Overlap	  Layout	  Consensus	  
•  De	  bruijn	  graphs	  



De	  Bruijn	  Graphs	  

Flicek,	  Nature	  Methods,	  2009	  

1.  Get	  k-‐bp	  (k-‐mer)	  subsequences	  for	  
reads.	  	  

2.  k-‐mers	  in	  the	  reads	  are	  collected	  
into	  nodes	  and	  the	  coverage	  at	  
each	  node	  is	  recorded.	  Link	  two	  k-‐
mer	  nodes	  if	  they	  have	  overlap.	  

3.  the	  graph	  is	  simplified	  to	  combine	  
nodes	  that	  are	  associated	  with	  the	  
con*nuous	  linear	  stretches	  into	  
single,	  larger	  nodes	  of	  various	  k-‐
mer	  sizes.	  	  

4.  error	  correc*on	  removes	  the	  *ps	  
and	  bubbles	  that	  result	  from	  
sequencing	  errors	  and	  creates	  a	  
final	  graph	  structure	  that	  
accurately	  and	  completely	  
describes	  in	  the	  original	  genome	  
sequence.	  



Differences between an overlap graph and a de Bruijn graph for assembly.  

Schatz M C et al. Genome Res. 2010;20:1165-1173 

Copyright © 2010 by Cold Spring Harbor Laboratory Press 



De	  Bruijn	  Graphs	  example	  

“It	  was	  the	  best	  of	  *mes,	  it	  was	  the	  worst	  of	  *mes,	  it	  was	  the	  age	  of	  

wisdom,	  it	  was	  the	  age	  of	  foolishness,	  it	  was	  the	  epoch	  of	  belief,	  it	  was	  

the	  epoch	  of	  incredulity,....	  “	  

Dickens,	  Charles.	  A	  Tale	  of	  Two	  Ci*es.	  1859.	  London:	  Chapman	  Hall	  

Velvet	  example	  courtesy	  of	  J.	  Leipzig	  2010	  

•  For	  the	  purposes	  of	  illustra*on,	  we	  can	  use	  human	  readable	  text	  
to	  explore	  how	  assemblies	  work.	  

•  This	  is	  an	  example	  taken	  from	  Leipzig	  et	  al	  2001.	  
•  In	  it	  he	  uses	  the	  opening	  paragraph	  from	  Dickens’	  “A	  tale	  of	  two	  

ci*es”.	  
•  It	  is	  an	  appropriate	  example	  because	  like	  genomes,	  it	  contains	  

strings	  that	  are	  repeat	  over	  and	  over.	  



De	  Bruijn	  Graphs	  example	  
itwasthebestogimesitwastheworstogimesitwastheageofwisdomitwastheageoffoolishness…	  

Generate	  	  random	  ‘reads’	   How	  do	  we	  assemble?	  

Tradi*onal	  all-‐vs-‐all	  comparisons	  of	  datasets	  this	  size	  require	  immense	  
computa*onal	  resources.	  
	  
De	  Bruijn	  solu*on:	  Construct	  a	  graph	  efficiently	  	  

fincreduli	   geoffoolis	   Itwasthebe	   Itwasthebe	   geofwisdom	   itwastheep	   epochofinc	   *mesitwas	   stheepocho	   nessitwast	   wastheageo	   theepochof	   stheepocho	   hofincredu	  
estogimes	  eoffoolish	  lishnessit	  hokeliefi	  pochofincr	  itwasthewo	  twastheage	  togimesit	  domitwasth	  ochokelie	  eepochoke	  eepochoke	  astheworst	  chofincred	  theageofwi	  
iefitwasth	   ssitwasthe	   astheepoch	   efitwasthe	   wisdomitwa	   ageoffooli	   twasthewor	   ochokelie	   sdomitwast	   sitwasthea	   eepochoke	   ffoolishne	   eofwisdomi	   hebestogi	  
stheageoff	   twastheepo	   eworstogi	   stogimesi	   theepochof	   esitwasthe	   heepochofi	   theepochof	   sdomitwast	   astheworst	   rstogimes	   worstogim	   stheepocho	   geoffoolis	  
ffoolishne	   *mesitwas	   lishnessit	   stheageoff	   eworstogi	   orstogime	   fwisdomitw	   wastheageo	   heageofwis	   incredulit	   ishnessitw	   twastheepo	   wasthewors	   astheepoch	  
heworstog	   okeliefit	   wastheageo	   heepochofi	   pochofincr	   heageofwis	   stheageofw	   fincreduli	   astheageof	   wisdomitwa	   wastheageo	   astheepoch	   olishnessi	   astheepoch	  
itwastheep	   twastheage	   wisdomitwa	   keliefitw	   bestogime	   epochokel	   theepochof	   sthebestof	   lishnessit	   hokeliefi	   Itwasthebe	   ishnessitw	   sitwasthew	   ageofwisdo	  
twastheage	   esitwasthe	   twastheage	   shnessitwa	   fincreduli	   keliefitw	   theepochof	   mesitwasth	   domitwasth	   ochokelie	   heageofwis	   ogimesitw	   stheepocho	   bestogime	  
twastheage	   foolishnes	   gimesitwa	   thebestog	   itwastheag	   theepochof	   itwasthewo	   okeliefit	   bestogime	   mitwasthea	   imesitwast	   *mesitwas	   orstogime	   estogimes	  
twasthebes	  stogimesi	  sdomitwast	  wisdomitwa	  theworstof	  astheworst	  sitwasthew	  theageoffo	  eepochoke	  theageofwi	  foolishnes	  incredulit	  okeliefit	  chofincred	  beliefitwa	  
beliefitwa	   wisdomitwa	   eageoffool	   eoffoolish	   itwastheag	   mesitwasth	   epochofinc	   ssitwasthe	   itwastheep	   astheageof	   stheageoff	   sitwasthee	   thebestog	   oolishness	  
heepochok	  ochokelie	  wastheepoc	  bestogime	  mesitwasth	  ebestogim	  pochofincr	  

…etc.	  to	  10’s	  of	  millions	  of	  reads	  



De	  Bruijn	  Graphs	  
Step	  1:	  “Kmerize”	  	  the	  data	  

Reads:	   theageofwi	  

age	  
geo	  
eof	  
ofw	  
fwi	  

sthebestof	  

sth	  
the	  
heb	  
ebe	  
bes	  
est	  
sto	  
tof	  

astheageof	  

ast	  
sth	  
the	  
hea	  
eag	  
age	  
geo	  
eof	  

worstogim	  

wor	  
ors	  
rst	  
sto	  
tof	  
og	  
gi	  
*m	  

imesitwast	  

ime	  
mes	  
esi	  
sit	  
itw	  
twa	  
was	  
ast	  

…..etc	  for	  all	  reads	  in	  the	  dataset	  

Kmers	  :	  
(k=3)	  

the	  
hea	  
eag	  



De	  Bruijn	  Graphs	  

age	   geo	   eof	   ofw	   fwi	  hea	   eag	  the	  
sth	   the	  

heb	   ebe	   bes	   est	   sto	   tof	  

ast	   sth	  
the	   hea	   eag	   age	   geo	   eof	  

Look	  for	  k-‐1	  overlaps:	  given	  by	  the	  reads	  

wor	   ors	   rst	  
sto	   tof	  

og	   gi	   *m	  

ime	   mes	  

esi	  
sit	  itw	  twa	  

was	  

ast	  

…..etc	  for	  all	  ‘kmers’	  in	  the	  dataset	  

Step2	  Build	  the	  graph	  



De	  Bruijn	  Graphs	  
	  step3:	  simplify	  the	  graph	  

•  The	  final	  step	  is	  to	  remove	  redundancy,	  result	  in	  the	  final	  De	  Bruijn	  Graph	  
representa*on	  of	  our	  genome.	  

•  the	  overlaps	  between	  reads	  are	  implicit	  in	  the	  graph,	  so	  all	  the	  millions	  v.s	  
millions	  of	  comparisons	  are	  not	  required.	  

•  On	  the	  downside,	  informa*on	  is	  lost	  as	  repe**ve	  sequences	  are	  “collapsed”	  
into	  a	  single	  representa*on.	  



De	  Bruijn	  Graphs	  
step4:	  Create	  con*gs	  

Find	  the	  Hamiltonian	  path	  or	  cycle	  in	  the	  De	  Bruijn	  
graph.	  Each	  path	  in	  the	  simplified	  De	  Bruijn	  graph	  is	  
a	  Hamiltonian	  path.	  A	  Hamiltonian	  path	  	  is	  a	  con*g.	  	  



Common Problems 
•  Spurs:	  dead-‐end	  sequences	  
•  Bubbles:	  divergent	  paths	  that	  then	  converge	  
•  Frayed	  rope:	  convergent	  then	  divergent	  paths	  
•  Cycles:	  paths	  convergent	  upon	  themselves	  E88'9B75)$*4B7'98)

W*3F$ *3F3$

3F3*$

3F3W$

F3*W$

F3W3$

3*WF$ *WFF$

Spurs 

W*3F$ *3F3$

3F3*$

3F3W$

F3*W$

F3W3$

3*WF$ *WFF$

Bubbles 

3W3F$ W3FF$

WFFW$

3FFW$

FFW*$

W3F3$

*3F3$

3F3*$ F3*W$ 3*WF$ *WFF$
Frayed 

Rope 
WFFW$

3*3F$

FW3F$ FFW*$

FFW3$

Cycles W3F*$

3F*W$

*W3F$

F*W3$



Resolve	  graph	  complexity	  



Strengths	  and	  problems	  	  
of	  De	  Bruijn	  approach	  

Strengths:	  
•  No	  need	  to	  calculate	  the	  overlaps	  
•  Size	  of	  the	  final	  graph	  is	  propor*onal	  to	  the	  genome	  size	  
•  successfully	  for	  very	  short	  reads	  (<50bp)	  

Problems:	  
•  The	  main	  drawback	  to	  the	  de	  Bruijn	  approach	  is	  the	  loss	  

of	  informa*on	  caused	  by	  decomposing	  a	  read	  into	  a	  
path	  of	  k-‐mers.	  

•  require	  an	  enormous	  amount	  of	  computer	  space	  
•  Can	  only	  resolve	  k	  long	  repeat	  
•  Loose	  connec*vity	  when	  create	  the	  con*gs	  
	  



Strengths	  and	  problems	  	  
of	  De	  Bruijn	  approach	  

Pros:	  correctly	  links	  two	  sequences	  
without	  having	  to	  compute	  overlap	  
score.	  (above	  case)	  
Cons:	  two	  sequences	  are	  linked	  
without	  any	  real	  overlap.	  (leg	  case)	  

Schlebusch,	  2012	  



De	  Bruijn	  Assemblers	  
•  Euler:	  hYp://nbcr.sdsc.edu/euler/	  ,	  Sanger,	  454,	  2001-‐2006	  

•  Velvet:	  hYp://www.ebi.ac.uk/~zerbino/velvet/,	  small	  genomes,	  
Sanger,	  454,	  Solexa,	  SOLiD,	  2007-‐2009	  (very	  good	  for	  small	  genome)	  

•  ABySS:	  hYp://www.bcgsc.ca/plarorm/bioinfo/sogware/abyss,	  large	  
genome,	  Solexa,	  SOLiD,	  2008-‐2011	  (for	  very	  large	  genome)	  

•  SOAP-‐denovo:	  hYp://soap.genomics.org.cn/soapdenovo.html,	  
Solexa,	  2009	  

•  ALLPATH-‐LG:	  
hYp://www.broadins*tute.org/sogware/allpaths-‐lg/blog/,	  	  large	  
genome,	  Solexa,	  SOLiD,	  2011	  (very	  good	  performance	  bu	  require	  2	  
lib	  of	  different	  insert	  sizes)	  

•  IDBA-‐UD:	  hYp://i.cs.hku.hk/~alse/hkubrg/projects/idba_ud/,	  Sanger,
454,Solexa,	  2010	  	  (metagenomic,	  doesn’t	  rely	  on	  coverage	  to	  remove	  
error)	  



Comparison	  of	  Assembly	  tools	  

Miller,	  genomics,	  2010,	  95(6):315-‐27	  

sink node. Each assembler searches the graph but each constrains its
searches for reasons of scale. A search in CABOG's overlap graph
follows only one outward edge per node. Searches in AllPaths and
Velvet examine local regions of the K-mer graph that are anchored by
large contigs and populated by direct and transitive paired-end
linkage. Euler and ABySS seem to rely on branch-and-bound search
algorithms.

Common to most assemblers, a core set of features is apparent:

• Error detection and correction based on sequence composition of
the reads.

• Graph construction to represent reads and their shared sequence.
• Reduction of simple non-intersecting paths to single nodes in the
graph.

• Removal of error-induced paths. These are recognized as spurs or
bubbles.

• Collapse of polymorphism-induced complexity. This is recognized
as bubbles.

• Simplification of tangles using information outside the graph.
Individual reads or paired-end reads act as constraints on path
distance and outcome.

• Conversion of reduced paths to contigs and scaffolds.
• Reduction of alignments to a consensus sequence.

OLC and DBG are two robust approaches to assembly. Both rely to
some extent on a set of overlaps between the input reads. Both
represent the overlaps in a directed graph. Their different graph
representations are similar if not equivalent [66]. The OLC approach

Table 1
Feature comparison between de novo assemblers for whole-genome shotgun data from next-generation sequencing platforms. OLC refers to the overlap/layout/consensus
architecture. DBG refers to the de Bruijn graph architecture. The table is based on the literature cited in the text. It may not reflect the current state of each software package.

Algorithm Feature Greedy Assemblers OLC Assemblers DBG Assemblers

Modeled features of reads

Base substitutions Euler, AllPaths, SOAP
Homopolymer miscount CABOG
Concentrated error in 3′ end Euler
Flow space Newbler
Color space Shorty Velvet

Removal of erroneous reads

Based on K-mer frequencies Euler, Velvet, AllPaths
Based on K-mer freq and QV AllPaths
For multiple values of K AllPaths
By alignment to other reads CABOG
By alignment and QV SHARCGS

Correction of erroneous base calls

Based on K-mer frequencies Euler, SOAP
Based on Kmer freq and QV AllPaths
Based on alignments CABOG

Approaches to graph construction

Implicit SSAKE, SHARCGS, VCAKE
Reads as graph nodes CABOG, Newbler, Edena
K-mers as graph nodes Euler, Velvet, ABySS, SOAP
Simple paths as graph nodes AllPaths
Multiple values of K Euler
Multiple overlap stringencies SHARCGS

Approaches to graph reduction

Filter overlaps CABOG
Greedy contig extension SSAKE, SHARCGS, VCAKE
Collapse simple paths CABOG, Newbler Euler, Velvet, SOAP
Erosion of spurs CABOG, Edena Euler, Velvet, AllPaths, SOAP
Transitive overlap reduction Edena
Bubble smoothing Edena Euler, Velvet, SOAP
Bubble detection AllPaths
Reads separate tangled paths Euler, SOAP
Break at low coverage Velvet, SOAP
Break at high coverage CABOG Euler
High coverage indicates repeat CABOG Velvet
Special use of long reads Shorty Velvet

Graph partitions

Partition by K-mers ABySS
Partition by scaffolds AllPaths

Uses for mate pairs

Constrain path searches Euler, Velvet, AllPaths
Guide path selection Euler, Allpaths
Detect misassembled contigs CABOG, Shorty
Merge contigs or fill gaps CABOG, Shorty Velvet, ABySS, SOAP
Transitive link reduction CABOG SOAP
Detect, avoid repeat contigs CABOG Velvet, SOAP
Create scaffolds CABOG, Shorty Euler, Velvet, AllPaths, SOAP
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sink node. Each assembler searches the graph but each constrains its
searches for reasons of scale. A search in CABOG's overlap graph
follows only one outward edge per node. Searches in AllPaths and
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• Reduction of alignments to a consensus sequence.

OLC and DBG are two robust approaches to assembly. Both rely to
some extent on a set of overlaps between the input reads. Both
represent the overlaps in a directed graph. Their different graph
representations are similar if not equivalent [66]. The OLC approach

Table 1
Feature comparison between de novo assemblers for whole-genome shotgun data from next-generation sequencing platforms. OLC refers to the overlap/layout/consensus
architecture. DBG refers to the de Bruijn graph architecture. The table is based on the literature cited in the text. It may not reflect the current state of each software package.

Algorithm Feature Greedy Assemblers OLC Assemblers DBG Assemblers

Modeled features of reads

Base substitutions Euler, AllPaths, SOAP
Homopolymer miscount CABOG
Concentrated error in 3′ end Euler
Flow space Newbler
Color space Shorty Velvet

Removal of erroneous reads

Based on K-mer frequencies Euler, Velvet, AllPaths
Based on K-mer freq and QV AllPaths
For multiple values of K AllPaths
By alignment to other reads CABOG
By alignment and QV SHARCGS

Correction of erroneous base calls

Based on K-mer frequencies Euler, SOAP
Based on Kmer freq and QV AllPaths
Based on alignments CABOG

Approaches to graph construction

Implicit SSAKE, SHARCGS, VCAKE
Reads as graph nodes CABOG, Newbler, Edena
K-mers as graph nodes Euler, Velvet, ABySS, SOAP
Simple paths as graph nodes AllPaths
Multiple values of K Euler
Multiple overlap stringencies SHARCGS

Approaches to graph reduction

Filter overlaps CABOG
Greedy contig extension SSAKE, SHARCGS, VCAKE
Collapse simple paths CABOG, Newbler Euler, Velvet, SOAP
Erosion of spurs CABOG, Edena Euler, Velvet, AllPaths, SOAP
Transitive overlap reduction Edena
Bubble smoothing Edena Euler, Velvet, SOAP
Bubble detection AllPaths
Reads separate tangled paths Euler, SOAP
Break at low coverage Velvet, SOAP
Break at high coverage CABOG Euler
High coverage indicates repeat CABOG Velvet
Special use of long reads Shorty Velvet

Graph partitions

Partition by K-mers ABySS
Partition by scaffolds AllPaths

Uses for mate pairs

Constrain path searches Euler, Velvet, AllPaths
Guide path selection Euler, Allpaths
Detect misassembled contigs CABOG, Shorty
Merge contigs or fill gaps CABOG, Shorty Velvet, ABySS, SOAP
Transitive link reduction CABOG SOAP
Detect, avoid repeat contigs CABOG Velvet, SOAP
Create scaffolds CABOG, Shorty Euler, Velvet, AllPaths, SOAP

324 J.R. Miller et al. / Genomics 95 (2010) 315–327



Comparison of the effect of various 
coverage depths on average contig length 

Lin Y et al. Bioinformatics 2011;27:2031-2037 

Read	  length	  =35	   Read	  length	  =75	  



Couple	  issues	  

•  Try	  different	  assemblers	  and	  compare	  their	  
results.	  

•  Need	  a	  big	  fat	  memory	  computer	  (from	  16GB	  
to	  1TB).	  

•  Running	  *me	  is	  long:	  from	  several	  hours	  to	  
several	  days.	  

	  



Running	  *me	  
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SOAPdenovo; in paired-end reads assembly of H.sap-3, Vel-

vet could not even finish the assembly. 

• In general, SOAPdenovo and ABySS were more efficient 

than other tools in terms of runtime and memory usage. 

SSAKE consumed the greatest amount of computational re-

sources. 

Table 6. Comparison of runtime and RAM in the computational 
demand test 

   Runtime (s) 

 
Bench.Seq 

(Length: bp) 
E.coli 
(4.6M) 

C.ele 
(20.9M) 

H.sap-2 
(50.3M) 

H.sap-3 
(100.5M) 

SSAKE 2,776 --- --- --- 
VCAKE 1,672 16,742 --- --- 
Euler-sr 1,689 11,961 29,622 --- 
Edena 895 8,450 17,043 --- 
Velvet 205 1,003 2,786 6,098 
ABySS 265 1,300 3,307 6,608 

SE 

SOAPdenovo 62 253 560 1,029 
SSAKE 9,163 --- --- --- 

Euler-sr 1,455 15,068 --- --- 
Velvet 229 1,351 55,581 --- 
ABySS 458 3,081 9,199 21,683 

PE 

SOAPdenovo 78 374 889 2,257 

  RAM (MB) 

 
Bench.Seq 

(Length: bp) 
E.coli 
(4.6M) 

C.ele 
(20.9M) 

H.sap-2 
(50.3M) 

H.sap-3 
(100.5M) 

SSAKE 9,933 --- --- --- 

VCAKE 4,099 17,408 --- --- 
Euler-sr 1,536 7,065 13,312 --- 
Edena 1,741 7,557 30,720 --- 
Velvet 1,229 4,045 9,830 22528 
ABySS 1,126 3,993 8,909 18432 

SE 

SOAPdenovo 935 2,867 8,089 18227 
SSAKE 16,384 --- --- --- 

Euler-sr 1,638 7,578 --- --- 
Velvet 1,331 5,324 30,720 --- 
ABySS 950 4,505 9,830 18,432 

PE 

SOAPdenovo 1,638 5,939 10,342 19,456 

Bench.Seq: Benchmark Sequence; s: second; MB: megabytes; SE: Single-End Reads 

Assembly; PE: Paired-End Reads Assembly. “---” denotes the RAM of computer is 

not enough or runtime is too long (greater than 10 days) to get assembly results. 

In this test, we also analyzed N50 lengths, sequence coverage, 

and assembly error rate. The results were consistent with several 

conclusions in previous sections (Supplemental Table 16). 

4 CONCLUSIONS AND DISCUSSIONS 

This study compared seven publically available and commonly 

used de novo assembly tools: SSAKE, VCAKE, Euler-sr, Edena, 

Velvet, ABySS and SOAPdenovo. These tools are specifically 

designed to assemble large numbers of short reads generated by 

next-generation sequencing platforms. 

In analyzing these tools, stronger performance is indicated by 

higher N50 values, higher sequence coverage, lower assembly 

error rates, and lower computational resource consumption (to 

enable assembly of larger genomes). The performance of different 

assembly tools was dependent, to some extent, on the test condi-

tions. Based on the results of our investigation, we propose the 

following guidelines for tool selection. Generally, SSAKE, Edena 

and Euler-sr need higher depths of coverage (~50x) than Velvet, 

ABySS and SOAPdenovo(~30x) to generate higher N50 lengths; 

SOAPdenovo was the fastest of all tools, and ABySS almost al-

ways consumed the least memo ry space. We have developed a 

tentative reference/guidelines for selecting optimal de novo tools 

under varying conditions (Table 7). Specific co mments regarding 

the performance of individual tools under different conditions are 

summarized below. 

Table 7. Recommendations for de novo tool selection under vary-
ing conditions 

Read Property Small Genome Large Genome 

 GC Read 
High 
N50 

High 
SC 

Low 
AER 

High 
N50 

High 
SC 

Low 
AER 

Short Eu, SS 
Ed, AB, 
Ve 

Eu, SO, 
Ed 

Ed, AB, 
Ve Low 

Long SS, SO 

SS 

AB, Ve SO 

SO, Ed 
AB, Ve 

AB, Ve 

Short Eu, SO 
AB, Ve, 
Ed 

SO, Eu 
AB, Ve, 
Ed 

SE 

High 
Long 

SO, Ed, 
AB, Ve 

SS, SO 
AB, Ve SO, Ed 

SO 
AB, Ve 

Short 
SO, SS, 
AB, Ve 

AB, SS, 
Ve, SO 

Low 
Long SO, SS 

AB, SS, 
SO, Ve 

SO, AB, 
Ve 

AB, 
SO, Ve 

Short SO SO 
PE 

High 
Long 

SO, AB, 
Ve 

AB 

AB, Ve, 
SO 

SO, AB, 
Ve 

AB 

AB, Ve, 
SO 

Requirements of assembly performance includes High N50, High Sequence Coverage 

(SC), Low Assembly Error rate (AER). For different requirements, We recommend 

some de novo tools with order of priority according to properties of sequence reads, 

including s ingle-end/paired-end, GC content, read length and sequence length. SE, 

Single end reads; PE, Paired end reads; Eu, Euler-sr; SS, SSAKE; Ed, Edena; AB, 

ABySS; Ve, Velvet; SO, SOAPdenovo. 

SSAKE provided good sequence coverage, and also generated 

good N50 lengths when assembling sequences with low GC con-

tent. On the other hand, SSAKE tended to generate more assembly 

errors and needed more depth of coverage to reach DCAP than 

most of the other tools tested. The time and memory usage of 

SSAKE was also the highest of the tools tested. Our results indi-

cated that assembly of large sequences (e.g. Homo sapiens) was 

not feasible with SSAKE.   

VCAKE produced the shortest N50 lengths in most situations, 

and the sequence coverage by VCAKE was comparable to 

SSAKE. VCAKE also generated many assembly errors, even high-

er than that of SSAKE under certain test conditions. The computa-

tional resources required to run VCAKE were a little less than 

those required for SSAKE. 

In assembling single-end short reads, Euler-sr produced the 

longest N50 values, but it also generated high assembly error rates, 

comparable to that of SSAKE. In addition, sequence coverage of 

Euler-sr was the lowest under most test situations. Euler-sr con-

sumed intermediate computational resources. 

Under most conditions tested, Velvet and ABySS show similar 

assembly performance; they generated similar N50 lengths, their 

DCAPs were relatively low, and they required acceptable compu-

tational resources. Consequently, it is feasible to use these tools for 

assembling large sequences, such as those obtained for Homo sa-
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SOAPdenovo; in paired-end reads assembly of H.sap-3, Vel-

vet could not even finish the assembly. 

• In general, SOAPdenovo and ABySS were more efficient 

than other tools in terms of runtime and memory usage. 

SSAKE consumed the greatest amount of computational re-

sources. 

Table 6. Comparison of runtime and RAM in the computational 
demand test 

   Runtime (s) 

 
Bench.Seq 

(Length: bp) 
E.coli 
(4.6M) 

C.ele 
(20.9M) 

H.sap-2 
(50.3M) 

H.sap-3 
(100.5M) 

SSAKE 2,776 --- --- --- 
VCAKE 1,672 16,742 --- --- 
Euler-sr 1,689 11,961 29,622 --- 
Edena 895 8,450 17,043 --- 
Velvet 205 1,003 2,786 6,098 
ABySS 265 1,300 3,307 6,608 

SE 

SOAPdenovo 62 253 560 1,029 
SSAKE 9,163 --- --- --- 

Euler-sr 1,455 15,068 --- --- 
Velvet 229 1,351 55,581 --- 
ABySS 458 3,081 9,199 21,683 

PE 

SOAPdenovo 78 374 889 2,257 

  RAM (MB) 

 
Bench.Seq 

(Length: bp) 
E.coli 
(4.6M) 

C.ele 
(20.9M) 

H.sap-2 
(50.3M) 

H.sap-3 
(100.5M) 

SSAKE 9,933 --- --- --- 

VCAKE 4,099 17,408 --- --- 
Euler-sr 1,536 7,065 13,312 --- 
Edena 1,741 7,557 30,720 --- 
Velvet 1,229 4,045 9,830 22528 
ABySS 1,126 3,993 8,909 18432 

SE 

SOAPdenovo 935 2,867 8,089 18227 
SSAKE 16,384 --- --- --- 

Euler-sr 1,638 7,578 --- --- 
Velvet 1,331 5,324 30,720 --- 
ABySS 950 4,505 9,830 18,432 

PE 

SOAPdenovo 1,638 5,939 10,342 19,456 

Bench.Seq: Benchmark Sequence; s: second; MB: megabytes; SE: Single-End Reads 

Assembly; PE: Paired-End Reads Assembly. “---” denotes the RAM of computer is 

not enough or runtime is too long (greater than 10 days) to get assembly results. 

In this test, we also analyzed N50 lengths, sequence coverage, 

and assembly error rate. The results were consistent with several 

conclusions in previous sections (Supplemental Table 16). 

4 CONCLUSIONS AND DISCUSSIONS 

This study compared seven publically available and commonly 

used de novo assembly tools: SSAKE, VCAKE, Euler-sr, Edena, 

Velvet, ABySS and SOAPdenovo. These tools are specifically 

designed to assemble large numbers of short reads generated by 

next-generation sequencing platforms. 

In analyzing these tools, stronger performance is indicated by 

higher N50 values, higher sequence coverage, lower assembly 

error rates, and lower computational resource consumption (to 

enable assembly of larger genomes). The performance of different 

assembly tools was dependent, to some extent, on the test condi-

tions. Based on the results of our investigation, we propose the 

following guidelines for tool selection. Generally, SSAKE, Edena 

and Euler-sr need higher depths of coverage (~50x) than Velvet, 

ABySS and SOAPdenovo(~30x) to generate higher N50 lengths; 

SOAPdenovo was the fastest of all tools, and ABySS almost al-

ways consumed the least memo ry space. We have developed a 

tentative reference/guidelines for selecting optimal de novo tools 

under varying conditions (Table 7). Specific co mments regarding 

the performance of individual tools under different conditions are 

summarized below. 

Table 7. Recommendations for de novo tool selection under vary-
ing conditions 

Read Property Small Genome Large Genome 

 GC Read 
High 
N50 

High 
SC 

Low 
AER 

High 
N50 

High 
SC 

Low 
AER 

Short Eu, SS 
Ed, AB, 
Ve 

Eu, SO, 
Ed 

Ed, AB, 
Ve Low 

Long SS, SO 

SS 

AB, Ve SO 

SO, Ed 
AB, Ve 

AB, Ve 

Short Eu, SO 
AB, Ve, 
Ed 

SO, Eu 
AB, Ve, 
Ed 

SE 

High 
Long 

SO, Ed, 
AB, Ve 

SS, SO 
AB, Ve SO, Ed 

SO 
AB, Ve 

Short 
SO, SS, 
AB, Ve 

AB, SS, 
Ve, SO 

Low 
Long SO, SS 

AB, SS, 
SO, Ve 

SO, AB, 
Ve 

AB, 
SO, Ve 

Short SO SO 
PE 

High 
Long 

SO, AB, 
Ve 

AB 

AB, Ve, 
SO 

SO, AB, 
Ve 

AB 

AB, Ve, 
SO 

Requirements of assembly performance includes High N50, High Sequence Coverage 

(SC), Low Assembly Error rate (AER). For different requirements, We recommend 

some de novo tools with order of priority according to properties of sequence reads, 

including s ingle-end/paired-end, GC content, read length and sequence length. SE, 

Single end reads; PE, Paired end reads; Eu, Euler-sr; SS, SSAKE; Ed, Edena; AB, 

ABySS; Ve, Velvet; SO, SOAPdenovo. 

SSAKE provided good sequence coverage, and also generated 

good N50 lengths when assembling sequences with low GC con-

tent. On the other hand, SSAKE tended to generate more assembly 

errors and needed more depth of coverage to reach DCAP than 

most of the other tools tested. The time and memory usage of 

SSAKE was also the highest of the tools tested. Our results indi-

cated that assembly of large sequences (e.g. Homo sapiens) was 

not feasible with SSAKE.   

VCAKE produced the shortest N50 lengths in most situations, 

and the sequence coverage by VCAKE was comparable to 

SSAKE. VCAKE also generated many assembly errors, even high-

er than that of SSAKE under certain test conditions. The computa-

tional resources required to run VCAKE were a little less than 

those required for SSAKE. 

In assembling single-end short reads, Euler-sr produced the 

longest N50 values, but it also generated high assembly error rates, 

comparable to that of SSAKE. In addition, sequence coverage of 

Euler-sr was the lowest under most test situations. Euler-sr con-

sumed intermediate computational resources. 

Under most conditions tested, Velvet and ABySS show similar 

assembly performance; they generated similar N50 lengths, their 

DCAPs were relatively low, and they required acceptable compu-

tational resources. Consequently, it is feasible to use these tools for 

assembling large sequences, such as those obtained for Homo sa-
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Whole	  genome	  sequencing	  

•  De	  Novo	  whole	  genome	  sequencing	  
•  Mapping	  assembly	  (Reference-‐guided	  
assembly)	  (Resequencing)	  

	  



Paired-‐end	  sequencing	  
•  Paired-‐End	  sequencing	  (for	  Mate-‐pairs)	  

–  Sequence	  two	  ends	  of	  a	  fragment	  of	  known	  size.	  

–  Currently	  fragment	  length	  (insert	  size)	  can	  range	  from	  200	  
bps	  –	  10,000	  bps	  

–  Paired-‐end	  sequencing	  is	  helpful	  for	  assembly	  and	  loca*ng	  
repeat.	  It	  also	  can	  detect	  rearrangements,	  including	  
inser*ons	  and	  dele*ons	  (indels)	  and	  inversions.	  	  

–  As	  paired	  end	  reads	  are	  more	  likely	  to	  align	  to	  a	  reference,	  
the	  quality	  of	  the	  en*re	  data	  set	  improves	  



Paired-‐end	  sequencing	  
by	  Illumina	  

Both	  the	  forward	  and	  reverse	  
template	  strands	  of	  each	  
cluster	  	  can	  be	  sequenced.	  

A	  simple	  modifica*on	  to	  the	  
standard	  single-‐read	  DNA	  
library	  prepara*on.	  	  

Solid-‐phase	  amplifica*on	  and	  
Cyclic	  reversible	  termina*on	  	  	  



Mate-‐pair	  libraries	  

Berglund	  et	  al.	  Inves/ga/ve	  Gene/cs	  2011	  2:23	  

adaptor	  

Use	  computer	  sogware	  to	  
remove	  adaptor	  sequences	  

bio/nylated	  
Circulariza*on	  



De	  Novo	  sequencing	  

•  New	  species/strains	  
•  Challenge	  of	  assembly	  with	  short	  reads	  

–  8x	  coverage	  of	  3	  GB	  genome	  =	  750	  million	  fragments	  
–  Exponen*al	  problem	  for	  all-‐vs-‐all	  algorithm	  (overlap)	  

•  Big	  problem	  with	  repeats	  
•  Assemble	  con*gs,	  fill	  gaps	  
•  Paired-‐end	  reads	  are	  essen*al	  



Shotgun	  Sequencing	  

•  Breaking	  the	  genome	  into	  a	  collec*on	  of	  small	  
DNA	  fragments	  	  

•  Sequencing.	  	  
•  Recons*tute	  the	  genome.	  

Shotgun	  sequencing	  
is	  a	  laboratory	  
technique	  for	  
determining	  the	  DNA	  
sequence	  of	  an	  
organism's	  genome.	  	  



Assembly Pipeline 
Preprocess 
& estimate 

Assembling	  

Scaffolding	  

Repeat 
Removing	  

Shotgun sequencing 
statistics 
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Typical contig coverage 
 

1 
2 
3 
4 
5 
6 C

ov
er

ag
e 

Contig 

Reads 

Imagine raindrops on a sidewalk:  
It can be modeled by Poisson distribution 

L = read length 
G = genome size 
N = number of reads 
c = coverage= (NL / G) Average	  coverage	  
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Lander-Waterman statistics 

L = read length 
G = genome size 
N = number of reads 
c = coverage =(NL / G) 
T = minimum detectable overlap 
σ = 1 – T/L 
 
E(# of islands) = Ne-cσ  
E(island size) = L((ecσ – 1) / c + 1 – σ) 
contig = island with 2 or more reads 

Smith-‐Waterman	  algorithm	  	  for	  sequence	  comparison	  
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Example 

c N #islands #contigs bases not in 
any read 

bases not in 
contigs 

1 1,667 655 614 698 367,806 

3 5,000 304 250 121 49,787 

5 8,334 78 57 20 6,735 

8 13,334 7 5 1 335 

Genome size: 1 Mbp   Read Length: 600 



Experimental data 
X 

coverage # ctgs % > 2X avg ctg size (L-W) max ctg size # ORFs 

1 284 54 1,234 (1,138) 3,337 526 

3 597 67 1,794 (4,429) 9,589 1,092 

5 548 79 2,495 (21,791) 17,977 1,398 

8 495 85 3,294 (302,545) 64,307 1,762 

complete 1 100 1.26 M 1.26 M 1,329 

Numbers based on artificially chopping up the genome of 
Wolbachia pipientis dMel 



Errors	  in	  Lander-‐Waterman	  Es*mate	  

Lander-‐Waterman	  has	  errors:	  

• 	  repeats	  

• 	  GC/AT	  rich	  regions	  
• 	  other	  low	  complexity	  regions	  

• 	  cloning	  biases	  in	  shotgun	  libraries	  



Expected average contig length for a range of different read lengths and coverage values.  

Schatz M C et al. Genome Res. 2010;20:1165-1173 Copyright © 2010 by Cold Spring Harbor Laboratory Press 

Read	  length	  

Dog:	  2.5	  billion	  bp	  
Panda:	  3	  billion	  bp	  



Schatz M C et al. Genome Res. 2010;20:1165-1173 



One	  more	  example	  

For	  yeast	  12Mbp	  

• 	  read	  length:	  200-‐400	  bp	  

• 	  coverage:	  50X	  	  	  	  (how	  many	  reads	  do	  we	  

need?)	  

• 	  paired-‐end	  read	  insert	  size:	  8kb	  (beYer	  to	  

make	  mul*ple	  libraries	  with	  different	  insert	  

sizes.)	  



Assembly Pipeline 
Preprocess 
& estimate 

Assembling	  

Scaffolding	  

Repeat 
Removing	  

•  Velvet:	  	  small	  genomes	  

•  ABySS:	  large	  genome	  



Scaffolding	  
•  Scaffolding	  groups	  con*gs	  into	  subsets	  
with	  known	  order	  and	  orienta*on.	  

•  Nodes	  are	  con*gs	  
•  Directed	  edge	  is	  between	  two	  nodes	  if	  
they	  are	  adjacent	  in	  the	  genome.	  
	  

Contig 1 Contig 2	  



Scaffolding	  
•  Mate	  pairs	  ,	  if	  in	  different	  con*gs,	  have	  a	  
chance	  of	  being	  neighbors.	  
	  



Scaffolding	  	  

Align	  reads	  from	  short	  
insert	  or	  long	  insert	  
library	  

Join	  con*gs	  using	  evidence	  from	  
paired	  end	  data	  

Con*gs	  from	  assembly	  

Scaffold	  



Scaffolding	  Algorithm	  
•  Find	  all	  connected	  components	  
•  Find	  a	  consistent	  orienta*on	  for	  all	  nodes	  in	  the	  
graph	  (all	  con*gs).	  	  
– Nodes	  (con*gs)	  have	  two	  types	  of	  edges	  

• Same	  orienta*on	  
• Different	  orienta*on	  

– Make	  sure	  linked	  con*gs	  have	  consistent	  
orienta*on.	  

– Op*miza*on	  problem	  –	  find	  the	  smallest	  number	  
of	  edges	  to	  be	  removed	  so	  that	  	  all	  con*gs	  have	  
consistent	  orienta*on.	  

•  Find	  the	  Hamiltonian	  path	  again.	  



Scaffolding	  sogware	  

•  Some	  assembly	  sogware,	  such	  velvet,	  can	  do	  scaffolding	  
as	  well.	  

•  Bambus	  -‐	  hYp://www.cbcb.umd.edu/sogware/bambus	  
•  SSPACE	  -‐	  
hYp://www.baseclear.com/landingpages/basetools-‐a-‐
wide-‐range-‐of-‐bioinforma*cs-‐solu*ons/sspacev12/	  

•  GRASS	  -‐	  hYp://code.google.com/p/tud-‐scaffolding/	  	  

	  



Addi*onal	  techniques	  for	  orienta*on	  

•  Physical	  mapping.	  Using	  informa*on	  from	  Bacterial	  
Ar*ficial	  Chromosome	  (BAC)-‐based	  physical	  maps.	  
Physical	  maps	  are	  built	  by	  clustering	  together	  of	  
BACs	  sharing	  por*ons	  of	  a	  DNA	  “fingerprint,”	  which	  
is	  a	  paYern	  of	  DNA	  fragments	  of	  various	  sizes.	  

•  Using	  markers	  along	  a	  DNA	  strand	  as	  independent	  
informa*on	  for	  scaffolding	  sogware.	  Markers	  are	  
known	  sequences	  of	  nucleo*des	  and	  tags.	  Markers	  
are	  searched	  in	  the	  con*gs.	  

•  Using	  large	  scale	  maps	  of	  landmarks	  that	  lie	  along	  
the	  the	  chromosomal	  DNA.	  

	  



Scaffolding	  

•  Addi*onal	  informa*on	  is	  also	  useful:	  
– Sequences	  of	  closely	  related	  organisms	  are	  also	  
used	  as	  scaffolding	  informa*on.	  

	  	  	  	  Example:	  aligning	  scaffolds	  of	  a	  mouse	  genome	  to	  
the	  human	  genome	  



Scaffolding:	  Issues	  

•  Errors	  in	  length	  of	  inserts	  (affec*ng	  distances	  between	  
clone	  mates)	  

•  Physical	  mapping	  is	  error	  prone.	  
•  first	  builds	  a	  sequence	  based	  on	  linking	  informa*on	  
with	  high	  confidence,	  then	  factors	  in	  linking	  informa*on	  
with	  lower	  confidence.	  
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The variability in repetitiveness among 
species species.  

Schatz M C et al. Genome Res. 2010;20:1165-1173 Copyright © 2010 by Cold Spring Harbor Laboratory Press 

The k-mer uniqueness ratio for five well-known 
organisms and one single-celled human parasite.  

The	  ra*o	  ==	  	  the	  
percentage	  of	  the	  
genome	  that	  is	  
covered	  by	  unique	  
sequences	  of	  length	  
k	  or	  longer.	  

The	  figure	  shows	  how	  
much	  of	  each	  genome	  
would	  be	  covered	  by	  k-‐
mers	  (reads)	  that	  occur	  
exactly	  once.	  



Repeat Control Issues	  

•  Assembly	  programs	  should	  detect	  repeats	  in	  
the	  assembly	  process	  and	  not	  ager.	  	  
– Incorrect	  genome	  reconstruc*on	  

•  Assemblers	  should	  try	  to	  resolve	  correctly	  as	  
many	  repeats	  as	  possible.	  
– Avoid	  intensive	  human	  labor	  
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Repeat Control – When? & How? 
•  pre-assembly: find fragments that belong to repeats 

–  statistically (most existing assemblers) 
–  repeat database (RepeatMasker) 

•  during assembly: detect "tangles" indicative of repeats 
(Pevzner, Tang, Waterman 2001) 

•  post-assembly: find repetitive regions and potential 
mis-assemblies.  
–  Reputer, RepeatMasker 
–  "unhappy" mate-pairs (too close, too far, mis-

oriented) 

sequencing error (2d for positions within a distance d ! l from the
endpoint of the reads). A greedy approach for the Error Correction
Problem is to look for error corrections in the reads that reduce the
size of Sl by 2l (or 2d for positions close to the endpoints). This
simple procedure already eliminates 86.5% of the errors in se-
quencing reads. EULER uses a more involved approach that elimi-
nates 97.7% of sequencing errors and transforms the original
sequencing data with 4.8 errors per read on average into almost
error-free data with 0.11 errors per read on average (22).

A word of caution is in place. Our error-correction procedure is
not perfect while deciding which nucleotide, among, let us say, A or
T is correct in a given l-tuple within a read. If the correct nucleotide
is A, but T is also present in some reads covering the same region,
the error-correction procedure may assign T instead of A to all
reads, i.e., to introduce an error rather than to correct it. Because
our algorithm sometimes introduces errors, data corruption is
probably a more appropriate name for this approach! Introducing
an error in a read is not such a bad thing, as long as the errors from
overlapping reads covering the same position are consistent (i.e.,
they correspond to a single mutation in a genome). An important
insight is that, at this stage of the algorithm, we do not care much
whether we correct or introduce errors in the sequencing reads.
From an algorithmic perspective, introducing a consistent error that
simply corresponds to changing a nucleotide in a final assembly is
not a big deal. It is much more important to make sure that we
eliminate a competition between A and T at this stage, thus
reducing the complexity of the de Bruijn graph. In this way, we
eliminate false edges in our graph and deal with this problem later:
the correct nucleotides are easily reconstructed either by a majority
rule or by a variation of the Churchill–Waterman algorithm (23).
For the NM sequencing project, orphan elimination corrects
234,410 errors and introduces 1,452 errors.

Eulerian Superpaths
Given a set of reads S " {s1, . . ., sn}, define the de Bruijn graph
G(Sl) with vertex set Sl#1 (the set of all (l # 1)-tuples from S) as
follows. An (l # 1)-tuple v ! Sl#1 is joined by a directed edge with
an (l # 1)-tuple w ! Sl#1, if Sl contains an l-tuple for which the first
l # 1 nucleotides coincide with v and the last l # 1 nucleotides
coincide with w. Each l-tuple from Sl corresponds to an edge in G.
If S contains the only sequence s1, then this sequence corresponds
to a path visiting each edge of the de Bruijn graph, a Chinese
Postman path (20). The Chinese Postman Problem is closely related
to the problem of finding a path visiting every edge of a graph
exactly once, an Eulerian Path Problem (24). One can transform the
Chinese Postman Problem into the Eulerian Path Problem by
introducing multiplicities of edges in the de Bruijn graph. For
example, one can substitute every edge in the de Bruijn graph by
k parallel edges, where k is the number of times the edge is used in
the Chinese Postman path. If S contains the only sequence s1, this
operation creates k ‘‘parallel’’ edges for every l-tuple repeating k
times in s1 (23). Finding Eulerian paths is a well known problem that
can be efficiently solved in linear time. We assume that S contains
a complement of every read and that the de Bruijn graph can be
partitioned into two subgraphs (the ‘‘canonical’’ one and its reverse
complement).

With real data, the errors hide the correct path among many
erroneous edges. The graph corresponding to the error-free data
from the NM project has 4,039,248 vertices (roughly twice the
length of the genome), whereas the graph corresponding to real
sequencing reads has 9,474,411 vertices (for 20-tuples). After the
error-correction procedure, this number is reduced to 4,081,857.

A vertex v is called a source if indegree(v) " 0, a sink if
outdegree(v) " 0, and a branching vertex if indegree(v)!
outdegree(v) $ 1. For the NM genome, the de Bruijn graph has
502,843 branching vertices for original reads (for l-tuple size 20).
Error corrections simplify this graph and lead to a graph with 382
sources and sinks and 12,175 branching vertices. Because the de

Bruijn graph gets very complicated even in the error-free case,
taking into account the information about which l-tuples belong to
the same reads (that was lost after the construction of the de Bruijn
graph) helps us to untangle this graph.

A path v1 . . . vn in the de Bruijn graph is called a repeat if
indegree(v1) $ 1, outdegree(vn) $ 1, and indegree (v1) "
outdegree(vi) " 1 for 1 ! i ! n # 1 (Fig. 3). Edges entering the
vertex v1 are called entrances into a repeat, whereas edges
leaving the vertex vn are called exits from a repeat. An Eulerian
path visits a repeat a few times, and every such visit defines a
pairing between an entrance and an exit. Repeats may create
problems in fragment assembly, because there are a few en-
trances in a repeat and a few exits from a repeat, but it is not clear
which exit is visited after which entrance in the Eulerian path. A
read-path covers a repeat if it contains an entrance into and an
exit from this repeat. Every covering read-path reveals some
information about the correct pairings between entrances and
exits. A repeat is called a tangle if there is no read-path
containing this repeat (Fig. 3). Tangles create problems in
fragment assembly, because pairings of entrances and exits in a
tangle cannot be resolved via the analysis of read-paths. To
address this issue, we formulate the following generalization of
the Eulerian Path Problem:

Eulerian Superpath Problem. Given an Eulerian graph and a
collection of paths in this graph, find an Eulerian path in this
graph that contains all these paths as subpaths.

To solve the Eulerian Superpath Problem, we transform both
the graph G and the system of paths ! in this graph into a new
graph G1 with a new system of paths !1. Such transformation is
called equivalent if there exists a one-to-one correspondence
between Eulerian superpaths in (", !) and ("1, !1). Our goal is
to make a series of equivalent transformations

%", !& 3 %"1 , !1& 3 · · · 3 %"k , !k&

that lead to a system of paths !k, with every path being a single
edge. Because all transformations on the way from (", !) to
("k, !k) are equivalent, every solution of the Eulerian Path
Problem in ("k, !k) provides a solution of the Eulerian Super-
path Problem in (", !).

Below, we describe a simple equivalent transformation that solves
the Eulerian Superpath Problem in the case when the graph G has
no multiple edges. Let x " (vin, vmid) and y " (vmid, vout) be two
consecutive edges in graph G, and let !x,y be a collection of all paths
from ! that include both these edges as a subpath. Informally,
x,y-detachment bypasses the edges x and y via a new edge z and
directs all paths in !x,y through z, thus simplifying the graph.
However, this transformation affects other paths and needs to be
defined carefully. Define !3x as a collection of paths from ! that
end with x and !y3 as a collection of paths from ! that start with
y. The x, y-detachment is a transformation that adds a new edge z "
(vin, vout) and deletes the edges x and y from G (Fig. 4a). This
detachment alters the system of paths ! as follows: (i) substitute z

Fig. 3. A repeat v1 . . . vn and a system of paths overlapping with this repeat.
The uppermost path contains the repeat and defines the correct pairing
between the corresponding entrance and exit. If this path were not present,
the repeat v1 . . . vn would become a tangle.

Pevzner et al. PNAS ! August 14, 2001 ! vol. 98 ! no. 17 ! 9751
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Detec*ng	  repeats	  
pre-assembly: 	  

•  Sta*s*cal	  methods	  
– Assemblers assume that reads are sampled 

uniformly at random. 
– Significant deviations from average coverage 

flagged as repeats. 
–  frequent k-mers are ignored 
– “arrival” rate of reads in contigs compared 

with theoretical value.  
(e.g., 800 bp reads & 8x coverage - reads "arrive" every 100 bp) 
 



Detec*ng	  repeats	  
during assembly	  

•  Example:	  In	  Euler	  assembly	  program	  
– Finds	  repeats	  by	  complex	  parts	  of	  the	  graph	  
constructed	  during	  the	  assembly	  process.	  

– Researchers	  look	  into	  these	  complex	  areas	  to	  try	  
and	  resolve	  repeats.	  

– Assemblers	  can	  use	  clone	  mate	  informa*on	  to	  
find	  incorrect	  assemblies.	  This	  is	  based	  on	  finding	  
clone-‐mate	  pairs	  too	  close	  or	  too	  far	  from	  one	  
another.	  (“unhappy”	  mate-‐pairs)	  
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Detec*ng	  repeats	  
post-assembly: Mis-assembled repeats 

 a b c 

a c 
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Repeat resolution 
•  Assemblers deduce that areas covered by a large 

number of reads may show an over-collapsed 

repeat. 

•  Problems with this - samples are not uniformly 

distributed (for example, non-random libraries and 

poor clonability regions). leads to false positives. 

•  Repeats with low copy number are missed - leads 

to false negatives. 



Repeat resolution 
•  Techniques	  for	  repairing	  sequencing	  errors	  during	  repeat	  

resolu*on	  
– find	  clusters	  of	  reads	  where	  the	  clusters	  share	  
differences.	  	  

•  For	  example,	  four	  reads	  contain	  an	  A	  ,	  four	  contain	  a	  B.	  
it	  is	  likely	  that	  the	  first	  four	  reads	  are	  from	  one	  copy	  
and	  the	  last	  four	  from	  a	  different	  one.	  

– Drawbacks	  are	  if	  certain	  areas	  of	  the	  sequence	  
have	  low	  coverage.	  	  

– Difficult	  to	  separate	  from	  true	  polymorphism	  
	  



Discussion:	  
Virtual	  genome	  assembly	  

•  Plant	  mitochondrion	  genome	  500,000	  bp	  	  	  	  DNA	  	  	  	  	  circular	  
•  How	  can	  you	  get	  mitochondria	  DNA?	  What	  problems	  do	  we	  need	  to	  concern	  for	  

this	  step?	  
•  For	  DNA	  fragmen*ng,	  what	  sizes	  of	  DNA	  fragments	  will	  you	  use?	  A.	  1Kbp,	  B.	  5kbp,	  

C.	  both	  
•  Pair-‐ended	  or	  single	  ended?	  
•  What	  depth	  do	  you	  sequence?	  how	  many	  lanes	  do	  you	  need	  if	  you	  use	  illumina	  

hiseq	  2000?	  or	  how	  many	  reads	  do	  you	  need	  to	  get?	  	  
•  Which	  assembler	  will	  you	  use?	  Why?	  
•  What	  computer	  do	  you	  used	  to	  do	  assemble?	  A.	  4GB	  laptop	  B.	  50GB	  worksta*on	  

C.	  computer	  cluster	  in	  HCC	  
•  According	  to	  your	  es*mate,	  how	  long	  does	  it	  take	  for	  assemble?	  A.	  30	  minutes	  B.2	  

hours	  C.	  12	  hours	  D.	  4	  days	  
•  What	  sogware	  do	  you	  used	  to	  do	  scaffold?	  how	  long	  does	  it	  take?	  	  
•  What	  is	  longest	  gap	  in	  one	  scaffold?	  How	  do	  you	  fill	  gaps?	  
•  How	  do	  you	  determine	  if	  your	  assembled	  genome	  is	  good	  enough?	  
•  how	  do	  you	  annotate	  genes?	  	  

On	  Thursday,	  Jan	  30.	  


