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MAS 5.0

Background correction: weighted average of grid background
Normalization: trimmed mean scaling

PM-MM correction (optional): Ideal mismatch
Summarization: one step Tukey s Biweight function

> set <- expresso(Dilution, bgcorrect.method = "mas",
normalize.method = "constant", pmcorrect.method = "mas",

summary.method = "mas"

> expression <-mas5(Dilution)



MASS: Summary

 Good
— Usable with single chips (though replicated preferable)
— Gives a p-value for expression data

e Bad:
— Lots of fudge factors in the algorithm

— Not *exactly* reproducible based upon documentation
(source now available)

* Misc
— Most commonly used processing method for Affy chips
— Highly dependent on Mismatch probes



i s

RMA

Background correction: RMA convolution
Normalization: quantile normalization
PM-MM correction (optional): none
Summarization: Fitting probe level model

Under R

> set <- expresso(Dilution, bgcorrect.method = “rma",
normalize.method = "quantiles", pmcorrect.method =
“omonly"”, summary.method =“medianpolish")

> expression<-rma(Dilution)



RMA: Summary

* Good:
— Results are log, scaled from the raw intensity values

— Rigidly model based method: defines model then tries to fit
experimental data to the model. Fewer fudge factors than MAS5

e Bad

— Does not provide “calls” as MAS5 does. MAS5 has p-values for each
probe, and Present/Marginal/Absent calls are thresholded.

— RMA cannot be applied to single chip.
* Misc
— The input is a group of samples that have same distribution of
intensities.
— Requires multiple samples



Outline

Background
Preprocessing of oligonucleotide microarray

Quality Assessment for oligonucleotide
Microarray

Differential Expression Testing



Some Causes of Technical Variation

Temperature of hybridization differs
Amount of RNA differs

RNA degraded in some samples

Yield of conversion to cDNA or cRNA differs
Strength of ionic buffers differs

Stringency of wash differs

Scratches on some chips

Ozone (affects Cy5) at some times



Quality Assessment

* Are there any factors that would lead you to
doubt or distrust a particular array ?

* Quality of inputs — e.g. RNA quality
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Spot QA for cDNA Spotted Arrays

* Spot Measures
— Uniformity
— Spot Area

* Inspectimages for artifacts

 Global Measures

— Qualitative assessments
— Averages of spot measures




Spot QA for cDNA Spotted Arrays

* Spot Measures
— Uniformity
— Spot Area

* Inspect images for artifacts

 Global Measures

— Qualitative assessments
— Averages of spot measures




Spatial Artifacts in Agilent

AG1_2_C5
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Spatial Artifacts in Nimblegen

e More common than
Agilent

e Usually more diffuse,
probably reflecting
washing

 Some sharp artifacts of
unclear origin




Spatial Artifacts in lllumina Arrays

e Often bigger artifacts than
Affy

* Less consequential because
more beads, and all have
same sequence




Spot QA for cDNA Spotted Arrays

* Spot Measures
— Uniformity
— Spot Area

* Inspectimages for artifacts

e Global Measures
— Qualitative assessments
— Averages of spot measures




Quality Assessment for

oligonucleotide Microarray

e Quality Assessment Plot

— Box plot or Density plot
— MA plot

e Quality Assessment Metric
— 3’ /5 ratio
— Covariation with Probe Position



MAS 5.0: Background correction

* UnderR:
> a=bg.correct (Dilution, method="mas")
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MAS 5.0: normalization

* UnderR:
> b=normalize (Dilution, method="constant”)
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MA plot - Ratio vs Intensity Plots

M” is the log2 intensity ratio for a probe in

the two chips

11 7 .

A" is the average log2 intensity for a probe
in the two chips

The MA plot gives a quick overview of the
distribution of the data.

The general assumption is that most of the
genes would not see any change in their
expression.

Therefore the majority of the points on the y
axis (M) would be located at 0, since Log(1)

Is O.

(11



MA plot

Median: 0.0721
IQR: 0.554

10

The general
assumption is that
most of the genes
would not see any
change in their
expression.



MA Plots:
Saturation & Quenching

e Saturation

— Decreasing rate of binding of RNA at higher
occupancies on probe

* Quenching:

— Light emitted by one dye molecule may be re-
absorbed by a nearby dye molecule

— Then lost as heat
— Effect proportional to square of density



How Much Variability on MA?

Ratios vs. intensity Ratios vs. intensity

Ratios vs. intensity

15

* MAplots for six arrays at random from Cheung
et al Nature (2005)



Common problems diagnosed using
MA-plots
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________________________________________________________________________________

>y <- (exprs(Dilution)[, c("20B", "10A")])

> ma.plot( rowMeans(log2(y)), log2(y[, 11/yl[, 2]),
cex=1)

> title(“Pre-Norm Dilutions Dataset (array 20B v
10A)")



3" /5 ratio: RNA quality

 The assumption is that RNA degradation, or
problems during labeling, can lead to under intensity
representation at the 5’ end of RNA, allowing the
ratio between signals from 5’ and 3’ probesets to be
used to assess RNA quality and labeling.

e Affymetrix genechip include a few RNA quality genes,
each represented by 3 probe-sets, one at 5 end of
RNA, one at the middle, and one at the 3’ end of

expressed RNA.

* The intensity ratio of 3’ probe-settothe 5 probe-
set for these genes can be used as a measure of RNA
quality (i.e., the severity of RNA degradation).



3" /5 ratio: RNA quality
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3" /5 ratio: RNA quality

 Using Bioconductor, the “simpleaffy” package can compute
these values.

> library("simpleaffy")

> d.qgc=qgc(Dilution)

>r

act
20A
20B
10A

atios(d.qc)

0.6961423
0.7208418
0.8712069

10B

. 0.9313709

G3/actin5 aainB/actinM g@dh3/gapdﬂ

0.1273385
0.1796231
0.2112914

0.2725534

0.4429746
0.3529890
0.4326566

0.5726650
\_ /

— mostly B-Actin and GAPDH genes
— 3 is the suggested safe threshold value for the 3" /5’

-0.06024147
-0.01366293
0.42375270
0.11258237

5 gapdh3/gapdhM

ratio.



Detect possible RNA degradation-
Covariation with Probe Position

RNAD dation PI
o RNA degrades egradation Plot

from 5’ end 3
* Intensity should 7 8-
? g
decrease from 3 < 84 7 e e
end uniformly s 8 — gienmes — &l
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Probe Position

Plot of average intensity for
each probe position across all
genes against probe position



Covariation with Probe Position

e AffyRNAdeqg plots in affy package

RNA degradation plot

> RD<-AffyRNAdeg(Dilution)
> plotAffyRNAdeg(RD)

> summaryAffyRNAdeg(RD)
20A 20B 10A 10B —

slope -0.02390.0363 0.02730.0849 ™
pvalue 0.8920 0.8400 0.8750 0.6160



Homework Assignment 7

To compare spikein133 data before and after
RMA bgcorrection and normalization

To compare MAS5() and RMA() for spikein133
To plot MA-plot

To plot AffyRNAdeg

Due by March 10
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The problem

* One the most common use of microarrays is to
determine which genes are differentially
expressed between pre-specified groups of
samples.

* Most investigators want to use microarray to
identify genes whose expression level changes
across conditions under study
— finding the genes affected by a treatment, or

finding marker genes that discriminate diseased
from healthy subjects



Type of problem

* To compare two groups
— Treatment group vs. control group

 To compare multiple groups
— Treatment A, Treatment B, Control group

* To consider multiple variables (factors)
simultaneously

— Treatment variable (Treatment vs. Control), age
variables (>50 vs. <50), ...



Two-group comparisons

* Atypical example: To compare gene expression
levels in breast tumor and normal tissues

e 6 affymetrix arrays (chips, samples) available
— 3 independent tumor samples
— 3 independent normal samples



Two-group comparisons

 Example Dataset: 20000 rows (genes) x 6 columns (samples)

T1 T2 T3 N1 N2 N3

G1
G2

G 20000

* Charactistics of dataset: many genes, only a few observations
(chips, arrays, or samples) per gene.

* To find out which genes are differentially expressed, we need
statistical analysis (e.g., applying separate statistical test for each
gene).



Statistics methods for two-group
comparisons

e T-test

— Student’ s t-test: assumes normally distributed data
in each group, equal variance within groups

— Welch t-test: as above, but allows unequal variance

* Univariate Linear model
* Nonparametric test

— Wilcoxon, or rank-sums test:

based

— Permutation test: estimate t
test statistics under the null
permutations of the sample

non-parametric, rank-

ne distribution of the
nypothesis by

abels



Student’ s T-test

— Student’ s t-test: assumes normally distributed data
in each group, equal variance within groups, fit the
data.

1

Sample B

Data Value X




Student’ s T-test

* Hypotheses:
H,:u, =u, H, tup =uy

e Test statistics:




Student’ s T-test

e The standard error in this dataset is




Student’ s T-test

* The null hypothesis H, is rejected when

p= 2P{’l’i > ‘T‘}
it is smaller than a specified threshold (e.g., 0.05)

T

Absolute T value



Student’ s T-test

* Group 1: expression values of P53 gene in 10
breast tumor samples

1.71 1.70 1.63 1.34 1.60 1.63 1.80 1.72 1.49 1.62

* Group 2: expression values of P53 gene in 10
breast normal samples

1.57 1.40 1.50 1.49 1.25 1.44 1.57 1.53 1.50 1.51



Student’ s T-test

e Questions: are P53’ s expressions in tumor different
from those in normal tissues? i.e., differentially
expressed?

 The two group means and their difference:
Y;=1.624 Y, =1.476,Y;-Y,=0.148

 The variances and the sum of their variances.
$;=0.13023, S,=0.09501, S=0.05098

T=0.148/0.05098=2.903
P-value = 0.0198



Student’ s T-test

* P-value is the probability of seeing a t-statistic this
extreme under the null hypothesis (i.e., areain
both tails of the distribution).

— Null hypothesis: The difference in mean expression
between the two groups is zero.

— Two-sided alternative hypothesis: The difference in
mean expression is non-zero.

 Three ways to get a larger t-statistic (small p-
value):
— Bigger difference in means
— Smaller standard deviation

— More samples



Two-group comparisons:
Student’ s T-test

* Using student’ s t-test to compare two groups, one for each

gene

T1 T2 T3 N1 N2 N3

G1
G2

G 20000



Two-group comparisons:
Student’ s T-test

* First, for genel, calculated the difference between group
means, divided by global standard error; obtain T1 and P1

T1 T2 T3 N1 N 2 N3 T-statistics P-value
G1 vl y2 y3 va vy5 y6 T1 P1
62 || ) )
| I
G 20000
Y T Y N
K )
|




Two-group comparisons:
Student’ s T-test

* Then, for gene?2, calculated the difference between group
means, divided by global standard error; obtain T2 and P2

T1 T2 T3 N1 N 2 N3 T-statistics P-value
G1 T1 P2
G2 vl y2 y3 va y5 y6 T2 p2
k ) K )
G 20000 Y_ Y_
Y T Y N
K )
|



Two-group comparisons:
Student’ s T-test

* Successively until the last gene, calculated the difference between
group means, divided by global standard error; obtain T20000 and

P2000
T1 T2 T3 N1 N2 N3 T-statistics P-value
G1 T1 P2
G2 T2 p2
G 20000 vl y2 y3 va y5 y6 T20000 P20000
k J \ )
1B Y
Y T Y N
K )
|



Two-group comparisons:
Student’ s T-test

 The result is that we obtain one p-value for each gene

T1 T2 T3 N1 N2 N3 T-statistics P-value
G1 T1 P2
G2 T2 p2

G 20000 T20000 P20000




Problems of student’ s T-test

* A drawback of the standard t-statistic for
microarray datasets is that most experiments
have only a few samples in each group (n1 and
n2 are small), and so the standard error s, is not
very reliable.

* In a modest fraction of cases, s, could be greatly
under-estimated, and genes that are little
changed give rise to extreme t-values, and
therefore false positives.



Other t statistics

 Moderated t-statistics (G smith 2004, Limma
package)

. Y, -7,
s/\n

~ 2 2
where ¢2 _ 57°d +5yd, isthe shrinkage estimate of
d+d, standard deviation

T

e Basically, it uses a way of Empirical Bayes to estimate
the standard deviations by looking at all genes
simultaneously



Problems of student’ s T-test

 Student s t-test assumes the data are normally
distributed.

* However, the normality assumption might be
violated in microarray study, especially when
the sample size is small.

 To testif the data is from a normal distribution,
you can use shapiro-wilks normality test.

— Under R: > shapiro.test(x)



Two-group comparisons:
Student’ s T-test

When the microarray data do not follow a
normal distribution, we can use non-parametric
tests to replace t-test.

When the two groups are independent, we can
use Wilcoxon Rank-sums test (Mann-Whitney
test )

When the two groups are paired, we can use
wilcoxon signed-rank test

We will mention these methods later.



Statistics methods for two-group
comparisons

e T-test

— Student’ s t-test: assumes normally distributed data
in each group, equal variance within groups

— Welch t-test: as above, but allows unequal vairance

* Univariate linear model
* Nonparametric test

— Wilcoxon, or rank-sums test:

based

— Permutation test: estimate t
test statistics under the null
permutations of the sample

non-parametric, rank-

ne distribution of the
nypothesis by

abels



