
Protein-Protein	Interac-on	
Network	

Lecture	2	
	



Outline	

•  Protein-Protein	Interac-on	Model	
•  How	to	get	PPI	

– Y2H	
– Bioinforma-cs	

•  PPI	databases	
•  PPI	network	proper-es	
•  Analysis	method	and	applica-ons	
•  Integra-on	with	other	omic	data	



Databases	that	store	interac-on	data		

•  Database	of	Interac-ng	Proteins	(DIP),	
hHp://dip.doe-mbi.ucla.edu/		

•  Biomolecular	Interac-on	Network	Database	(BIND)	,	
hHp://www.bind.ca/		

•  Molecular	Interac-ons	Database	(MINT),	
hHp://160.80.34.4/mint/		

•  INTERACT	hHp://www.ebi.ac.uk/intact/index.html	
•  PIBASE,	hHp://alto.compbio.ucsf.edu/pibase/		
•  MIPS	contains	interac-on	data	(both	direct	and	clusters)	

for	yeast		
•  SCOPPI,	hHp://www.scoppi.org/		
•  Prolinks,	

hHp://mysql5.mbi.ucla.edu/cgi-bin/func-onator/pronav		



DIP	

Tumor	suppressor	gene	P53,	PID	ID	“<DIP:369N>”	



DIP	Interac-on	Details	



DIP	services	

Expression	Profile	Reliability	(EPR)	
Homology	methods	-Paralogous	Verifica-on	(PVM)	
Domain	Pair	Verifica-on	(DPV)	



BIND	
•  Designed	to	hold	direct	interac-on,	cluster	and	pathway	

data	81,000	interac-ons	wriHen	in	ASN.1	(Abstract	
Syntax	Nota-on)	for	computa-onal	efficiency	

Bader	GD,	Betel	D,	Hogue	CW.	(2003)	Nucleic	Acids	Res.	31(1):248-50	



Arabidopsis	Databases	that	store	
interac-on	data		

•  TAIR	
ep://ep.arabidopsis.org/home/tair/Proteins/
Interactome2.0/		

•  hHp://bioinforma-cs.psb.ugent.be/
supplementary_data/stbod/athPPI/site.php	

•  AtPIN	
hHp://bioinfo.esalq.usp.br/atpin/atpin.pl		

•  AtPid	hHp://atpid.biosino.org/		



Domain-Domain	interac-on	Database	

•  iPfam,	
hHp://www.sanger.ac.uk/Soeware/Pfam/
iPfam/	

•  3did	(domain	interac-ons)	
hHp://gatealoy.pcb.ub.es/3did/		

•  DIMA	
hHp://webclu.bio.wzw.tum.de/dima/
downloads.jsp	
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Random	Networks	

•  Uniformly	random	network:		
– distributes	the	edges	uniformly	among	nodes.		

•  Probabilis-c	interpreta-on:		
– There	exists	a	set	(ensemble)	of	networks	with	
given	number	of	nodes	and	edges.	Select	a	
random	member	of	this	set.	



Random	Networks	



Node	degrees	in	random	graphs	

 Average	degree:		
	
	
	
Degree	distribu0on:		

Most	 of	 the	 nodes	 have	 approximately	 the	 same	 degree.	
The	 probability	 of	 very	 highly	 connected	 nodes	 is	
exponen-ally	small.	
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A	scale	free	network	

•  Power-law	degree	distribu-ons	were	found	in	
diverse	networks		



A	scale	free	network	

•  Power-law	degree	distribu-ons	were	found	in	
diverse	networks		
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Power-law	degree	distribu-ons		



AT
H	
PP

I	 k log(k) P(k) log(P(k)) 

1 0 3721 8.221 

2 0.693 2082 7.641 

3 1.098 1238 7.121 

4 1.386 888 6.788 

5 1.609 680 6.522 

6 1.791 473 6.159 

7 1.945 390 5.966 

8 2.079 353 5.866 

9 2.197 293 5.680 

10 2.302 243 5.493 

11 2.397 246 5.505 

12 2.484 226 5.4205 

13 2.564 192 5.257 

14 2.639 174 5.159 

15 2.708 155 5.043 

16 2.772 145 4.9767 

17 2.833 116 4.753 



 Scale	Free	

Han	et	al.	Nature,	2004	
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Hub	proteins=Essen-al	proteins	
•  An	essen-al	gene	is	one	that,	when	knocked	out,	
renders	the	cell	unviable.	

•  Hub	proteins	are	significantly	enriched	for	essen-al	
proteins.	(Jeong	et	al.	2001,	Nature		411,41)	
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Essen-ality	

Essen-ality	
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Yu		(2004)	Trends	in	Gene-cs,	20(6),	227	

Hubs	have	high	degrees	

Essen-al	genes	have	high	
essen-ality.	



Hub	proteins	close	to	each	other	

•  Hub	proteins	have	lower	average	length	of	
shortest	path		among	themselves	than	non-hub	
proteins.	(Moslov	et	al.	2002	Science	296,	910	)	



Length	of	shortest	path	

Long	

short	

Moslov	et	al.	2002	Science	296,	910		
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Clustering	coefficient	
•  Local	clustering	coefficient	Ci	for	a	vertex	vi	is	
given	by	the	propor-on	of	links	between	the	
ver-ces	within	its	neighborhood	divided	by	
the	number	of	links	that	could	possibly	exist	
between	them.	

€ 

Ci =
eij

V(V −1) /2



Sta-c	or	Dynamic	
•  Combined	PPI	with	gene	expression	profiles.	
•  Calculate	co-express	correla-on	between	
hubs	and	their	neighbors.	

•  Two	types	of	hubs:	

Party	Hub	 Date	Hub	
Han	et	al.	(2004)	Nature		430(6995):88-93	



Gene	Co-expression	correla0on	

T1 T2 T3 T4 T5 

A 2.5 2.8 3.7 4.6 1.5 

B 0.2 0.8 0.3 1.5 0.6 

C 1.9 1.3 0.2 0.8 1.6 

D 0.8 1.4 0.7 1.6 1.7 

E 1.5 1.8 0.3 0.5 1.9 

correlation 

C.C 

A-B 0.76 

A-C 0.90 

A-D 0.50 

… 0.83 

D-E 0.42 

cutoff 

>= 0.6 

pair-wise 

A	

B	



Hub	Co-expression	correla0on	
T1 T2 T3 T4 T5 

A 2.5 2.8 3.7 4.6 1.5 

B 2.4 2.8 3.6 4.7 1.6 

C 1.9 2.0 3.2 4.2 1.3 

D 2.8 3.0 4.1 5.0 2.5 

E 1.5 1.8 3.0 4.0 1.2 

  

B	

A	

B	

A	

T1 T2 T3 T4 T5 

A 2.5 2.8 3.7 4.6 1.5 

B 5.4 0.8 1.6 4.7 3.6 

C 1.0 5.0 1.2 2.2 3.3 

D 4.8 0.3 0.1 6.0 1.5 

E 1.0 2.8 3.4 0.0 1.2 



Date	or	Party	Hubs	

  

Party	Hubs	are	expressed	with	
their	connec-on	partners	at	same	
-me.	They	will	form	a	large	protein	
complex.	They	are	more	essen-al.	
Most	of	them	are	house	keeping	
genes.		

Date	Hubs	bind	with	their	different	
connec-on	partners	at	different	
-me.	They	have	many	different	
binding	sites.	They	have	more	
disorder	regions.		



Network	topology	of	hubs	
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Hub	proteins	

•  Mul-ple	and	repeated	domains	are	enriched	in	
hub	proteins		

•  Long	disordered	regions	are	common	in	hubs.		

(Ekman	et	al.	2006	Genome	Biol.	7(6):	R45)	

disordered	regions	are	typically	
involved	in	regula-on,	signaling	and	
control	pathways	in	which	interac-ons	
with	mul-ple	partners	and	high-
specificity/low-affinity	interac-ons	are	
oeen	requisite.	



Hub	proteins	

PH:	Party	Hubs	
DH:	Date	Hubs	
NH:	Non-hubs	



Centrality	of	PPI	

•  In	yeast,	worm,	and	fly	PPI	networks,	the	
number	of	degrees	and	the	centrality	of	
proteins	in	the	networks	have	similar	
distribu-ons.	

•  Essen-al	proteins	have	significant	centrality.	
•  Proteins	that	have	a	more	central	posi-on	in	
all	three	networks,	regardless	of	the	number	
of	direct	interactors,	evolve	more	slowly	and	
are	more	likely	to	be	essen-al	for	survival.		

Hahn	et	al.	(2004)	Molecular	Biology	and	Evolu-on,	22(4)	803.	



Centrality	
•  Measure	of	the	centrality	of	a	vertex	within	a	
graph	that	determine	the	rela-ve	importance	
of	a	vertex	within	the	graph.	
– Closeness	centrality	
– Betweenness	centrality	



Closeness	centrality		
•  It	is	defined	as	the	average	distance	between	
a	vertex	v	and	all	other	ver-ces	reachable	
from	it.	

•  For	a	graph	G:	=	(V,E)	with	n	ver-ces,	the	
degree	centrality	Cc(v)	for	vertex	v	is	
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A	node	is	important	if	it	has	a	small	closeness	centrality,	
because	it	is	close	to	any	other	node.		



Betweenness	centrality	
•  Ver-ces	that	occur	on	many	shortest	paths	
between	other	ver-ces	have	higher	
betweenness	than	those	that	do	not.	

•  For	all	node	pairs	(i, j),	find	the	number	of	
shortest	paths	between	them,	σ(i,j),	and	
determine	how	many	of	these	pass	through	
node	k			-	σk(i,j)		
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k
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A	node	is	important	if	it	has	a	large	Betweenness	centrality,	
because	many	shortest	paths	pass	it.		



Essen-ality	and	Centrality	

Yeast	 Worm	 Fly	

Betweeness	
Centrality	

Essen-al	 0.0009	 0.0017	 0.0007	

Non-
Essen-al	 0.0007	 0.0009	 0.0004	

1／Closeness	
Centrality	

Essen-al	 0.244	 0.183	 0.238	

Non-
Essen-al	 0.239	 0.175	 0.221	

Degrees	
Essen-al	 19.3	 8.2	 9.8	

Non-
Essen-al	 15.8	 5.6	 5.7	

Hahn	et	al.	(2004)	Molecular	Biology	and	Evolu-on,	22(4)	803.	



Essen-ality,	Centrality,		
slow	evolu-on	rate	

correla0on	 Yeast	 Worm	 Fly	

Dn			-		Betweeness	 -0.174	 -0.118	 -0.071	

Dn			-		Closeness	 -0.085	 -0.114	 -0.064	

Dn			-		Degrees	 -0.161	 -0.027	 -0.053	

• 		Iden-fied	orthologs	of	the	proteins	in	the	yeast,	worm,	and	fly	networks	in	the	
related	species	S.	paradoxus,	C.	briggsae,	and	D.	pseudoobscura,	respec-vely.	
• 		Dn	=	the	number	of	nonsynonymous	differences	per	nonsynonymous	site.	(that	
changes	amino	acid).	This	is	propor-onal	to	the	evolu-on	rate.	
• 	Essen-al	genes	are	house-keeping	genes,	have	slow	evolu-on	rate.	

Hahn	et	al.	(2004)	Molecular	Biology	and	Evolu-on,	22(4)	803.	



Evolu-on	Rates	of	party	or	date	hubs	

Date	Hubs	 Party	Hubs	

Dn	 0.7597	 0.5652	

Ds	 2.3133	 2.4254	

Dn/Ds	 0.3631	 0.2627	

Kahali	Et	al	(2009)	Gene,	429,	18	

• 	The	lowering	of	evolu-onary	rate	of	the	party	hub	proteins	
than	the	date	hub	proteins.	
• 	Party	hubs	form	a	big	protein	complex;	they	are	more	
essen-al.	

Dn:	non-synonymous	distance	(changes	amino	acid)	
Ds:	Pairwise	synonymous		(do	not	change	amino	acid)	



PPI		Network	topology	

•  Global	protein	interac-on	network	is	highly	
interconnected	and	hence	interdependent,	
more	like	the	con-nuous	dense	aggrega-ons	
of	stratus	clouds	than	the	segregated	
configura-on	of	altocumulus	clouds.	

Batada	et	al.	(2006)	PloS	Biology,	4(10),	e137		



Altocumulus	or	Stratus		

highly	interconnected	and	
hence	interdependent	



Fault	tolerance	of	PPI	Networks			

Brady	et	al.	(2009)	Plos	One,	4(4)	e5364	

• 	Whether	there	exist	alterna-ve	pathways	that	
can	perform	some	required	func-on	if	a	gene	
essen-al	to	the	main	mechanism	is	defec-ve,	
absent	or	suppressed.	
	

hHp://www.ncbi.nlm.nih.gov/pubmed/19399174	
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Func-on	predic-on	



Func-on	predic-on	

•  Direct		Methods				
– Neighborhood		based		Methods		
– Graph		theory	methods	
– Probabilis0c	Methods	

•  Module	assisted		methods										
– General		Methods											
– Hierarchical		clustering		based											
– Graph		clustering		methods											
– Expansion		of		complex		seeds			



Neighborhood	based		methods		

•  Decides		the		func-on		of		a			protein		from		a		
set		of		known			func-ons		of		its		neighbors.			



Neighborhood	based		methods	(1)		

•  Predicts		for		a		given		protein		up		to		three		
func-ons		most			common		among		its		
neighbors.		

Schwikowski		et		al		(2000)	Nature	Biotech.	18,	1257.		

4	Red	neighbors,	that	is	
larger	then	the	threshold	
3	



Predic0on	of	func0on	by	direct	and	
indirect	protein	interac0ons	

•  YHR105W,	YPL246C,	and	YGL161C	are	proteins	of	unknown	
func-on.	Akr2	is	a	protein	involved	in	endocytosis	and	
therefore	suggests	a	func-on	for	YHR105W.	This	poten-al	
func-on	is	supported	by	indirect	interac-ons	with	Ypt1,	
Vam7,	Yip1,	and	Pep12,	which	have	been	also	implicated	in	
vesicular	transport	and/or	membrane	fusion.	

Schwikowski		et		al		(2000)	Nature	Biotech.	18,	1257.		



Neighborhood	based		methods	(2)		
•  Examine		the		neighborhood		of		a		protein		and		
compute		scores	for	a	certain	func-on	to	see	if	
this	func-on	is	enriched	in	this	neighborhood.			

•  For	a	protein,	each	func-on	f	is	assigned	a	score	
(nf	-ef)2/ef.	If	this	score	is	larger	than	a	threshold,	
the	protein	has	this	func-on.	

•  	nf	is	the	number	of	neighbor	proteins	that	have	
the	func-on	f		

•  ef	is	the	expecta-on	of	this	number	based	on	the	
frequency	of	f	among	the	network’s	proteins.	

Hishigaki		et		al		(2001)	Yeast	2001;18:523-531.	

nf=	4		for	red	func-on		



Neighborhood	based		methods	(3)		
•  Considers		level	1	and		level	2	neighborhood		of		a					
target		protein.		

•  Level-1	neighbors	that	are	also	Level-2	neighbors		
are	the	highest	likelihood	of	sharing	func-ons	

Chua		et		al.		(2006)				Bioinforma-cs,	22(13),1623		
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Func-on	predic-on	

•  Direct		Methods				
– Neighborhood		based		Methods		
– Graph		theory	methods	
– Probabilis0c	Methods	

•  Module	assisted		methods										
– General		Methods											
– Hierarchical		clustering		based											
– Graph		clustering		methods											
– Expansion		of		complex		seeds			



Graph  theory Methods 

•  In		contrast		to		local,		neighborhood		coun-ng		
methods,		these			approaches		are		global,		and		
take		into		account		the		global		topology			of		
the		network.			



Graph  theory Methods 

•  Minimum		mul--way		cut.		

Vazquez		et		al		(2003)			Nature	Biotech,	21,	697	

Func-on	unknown	proteins	



Graph  theory Methods 

•  Minimum		two-way		cut.			

Karaoz		et		al		(2004)		



Predict	pathogenic	genes		

•  A	network	approach	to	predict	pathogenic	
genes	for	Fusarium	graminearum.	(Liu	et	al.	
Plos	One,	2010,	5(10))		

•  Fusarium	graminearum	is	the	pathogenic	
agent	of	Fusarium	head	blight	(FHB),	which	is	
a	destruc-ve	disease	on	wheat	and	barley	

•  Aim:	with	a	network	of	Fusarium	and	49	
known	pathogenic	genes,	can	we	predict	
more	pathogenic	genes?	



Pathogenic	gene	interac-on	network	



Func-on	predic-on	

•  Direct		Methods				
– Neighborhood		based		Methods		
– Graph		theory	methods	
– Probabilis0c	Methods	

•  Module	assisted		methods										
– General		Methods																	
– Graph		clustering		methods											
– Expansion		of		complex		seeds			



Interac0on	Network	Is	Made	of	Modules	

Computer Circuit Boards
Transcriptional regulatory network

Bar-Joseph et al, Nature Biotech. 2003

Computational prediction of  modules from network  



Protein	Complex	
•  12-subunit	RNA	Polymerase	II	

PDB:	2B8K	



General		Methods	
•  Find	regions	that	have	high		clustering		coefficient.			
MCODE,		Bader		and		Hogue		(2003)		BMC	
Bioinforma-cs,	4:2.	

•  Define	a	Cluster		property	score.		Star-ng	from	single	
nodes,	clusters	are	gradually	grown	as	long	as	the	
cluster	property	of	the	added	nodes	and	the	density	of	
the	cluster	both	exceed	a	certain	threshold.	Altaf-Ul-
Amin		et		al		(2006),	BMC	Bioinforma-cs,	7:207		

•  Each		candidate		set		of		proteins		is		a			assigned		a		
likelihood		ra-o		score	that	measures	its	fit	to	a	protein	
complex	model.				NetworkBlast,	Sharan		et		al	(2005),	
J.	Computa-onal	Biology,	12(6),	835.			



Graph		clustering		methods		
•  Use	shortest	path	length	between	proteins	as	a	
distance,	and	conduct	the	clustering	procedure.	
Arnau	et	al	(2005)		Bioinforma-cs,	21,	364.	

•  Superparamagne-c	clustering	(SPC).	Spirin	and	
Mirny	(2003)	PNAS,	100,	12123.	

•  highly	connected	subgraphs	(HCS)	algorithm.	
Przulj	et	al	(2004),	Bioinforma-cs,	20,	340	

•  The	restricted	neighborhood	search	clustering	
(RNSC)	algorithm.	King	et	al.	(2004),	20,	3013	

•  The	Markov	clustering	(MCL)	algorithm.	Enright	
et	al.	(2002),	Nucleic	Acid	Research,	30,	1575	



Expansion		of		complex		seeds		
•  In	contrast	to	finding	complexes	de	novo	in	the	protein	

interac-on	network,	several	works	aHempted	predic-on	of	
new	members	for	par-ally	known	protein	complexes.	

•  SEEDY:	constructs	complexes	by	adding	proteins	to	a	given	
seed,	as	long	as	the	reliability	of	the	most	reliable	path	
from	a	candidate	to	the	seed	does	not	fall	below	a	given	
threshold.		Bader		(2003)	Bioinforma-cs,	19,	1869	

•  Complexpander:	start	from	a	par-cular	‘core'	set	of	
proteins	and	produces	a	list	of	candidate	proteins,	ranked	
by	the	probability	of	membership	in	the	complex.	Asthana	
et	al	(2004)	Genome	Research	14,	1170	

•  For	a	given	“seed”,	the	algorithm		expands	it	through	a	
breadth-first-search	graph	traversal.		Wu	and	Hu	
(2005)	IEEE	Symposium	on	Computa-onal	Intelligence	in	
Bioinforma-cs	and	Computa-onal	Biology	135.	


