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Databases that store interaction data

Database of Interacting Proteins (DIP),
http://dip.doe-mbi.ucla.edu/

Biomolecular Interaction Network Database (BIND),
http://www.bind.ca/

Molecular Interactions Database (MINT),
http://160.80.34.4/mint/

INTERACT http://www.ebi.ac.uk/intact/index.html
PIBASE, http://alto.compbio.ucsf.edu/pibase/

MIPS contains interaction data (both direct and clusters)
for yeast

SCOPPI, http://www.scoppi.org/

Prolinks,
http://mysqgl5.mbi.ucla.edu/cgi-bin/functionator/pronav




DIP

il

Database of Interactin g Proteins

. IMEx
PN
2

Search by:[protein] [sequence] [motif] [article] [pathBLAST]

[Help][LOGIN]

Jobs
Helpll  pip
News 369N BROWSE LINKS
Register
Statistics | [Protein: Cellular tumor antigen p53 |
Satellites | Binary Complex Functional
SEARCH DIP Cross Reference e e e et
SUBMIT| [ Interaction | Interactor(s) SWISSPROT | GENBANK
m DIP:88484E (DIP:32548N Q60974 --- Nuclear receptor corepressor 1
m DIP:40078E [DIP:24169N Q64364 £1:6753390 p19ARF tumor suppressor protein
m DIP:480E DIP:1048N P04049 gi:66762 RAF proto-oncogene serine/threonine-protein kinase
Files | |DIP:40079E  DIP:24196N P23804 2i:1209699  |Ubiquitin-protein ligase E3 Mdm?2
MIF | [IDIP:88486E |[DIP:46345N Q61827 - Transcription factor MafK
DIP:40141E |DIP:24266N Q13625 gi: 16197705 |((Bbp)
DIP:522E  |DIP:1074N |Q9DH70 |2i:73275 [large T antigen
DIP:88309E |DIP:46342N |w | - Transcription regulator protein BACH1
DIP:88485E |M |M | - Histone deacetylase 1
DIP:40140E [DIP:5978N |Q12888 |2i:8928568  |Tumor suppressor pS3-binding protein 1

Tumor suppressor gene P53, PID ID “<DIP:369N>"




DIP Interaction Details

DIP LINK
I DIP
88484E
DIP PIR DNMS53 SwissProt P02340 GenBank gi:2144761
369N Name/Description Cellular tumor antigen p53
DIP PIR SwissProt Q60974 GenBank
32548N Name/Description Nuclear receptor corepressor 1
Evidence Help
Type Method Details Source Curation |[IMEx
E(d) |anti bait coimmunoprecipitation R PMID:19011633 DIP B

v

SMSC(1)

The IMEx Consortium




DIP services
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DIP SERVICES

Large collections of data, such as the DIP database that gathers information about nearly 11,000 protein-protein interactions, provide a unique
opportunity for data anaysis.

The DIP Services page provides access to the methods of data analysis that, at their core, utilize the vast amount of information embedded within
the DIP database.

Available Services

EPR Index Expression Profile Reliability Index (EPR Index) evaluates the quality of a large-scale protein-protein interaction data sets by
comparing the expression profile of the interacting dataset with that of the high-quality subset of the DIP database.

PVM Score The Paralogous Verification (PVM) method judges an interaction probable if the putatively interacting pair has paralogs that also
interact

DPV Score The Domain Pair Verification (DPV) method judges an interaction probable if potential domain-domain interactions between the pair
are deemed probable

Expression Profile Reliability (EPR)
Homology methods -Paralogous Verification (PVM)
Domain Pair Verification (DPV)




BIND

* Designed to hold direct interaction, cluster and pathway
data 81,000 interactions written in ASN.1 (Abstract
Syntax Notation) for computational efficiency
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Arabidopsis Databases that store
interaction data

TAIR
ftp://ftp.arabidopsis.org/home/tair/Proteins/
Interactome?2.0/

http://bioinformatics.psb.ugent.be/
supplementary data/stbod/athPPl/site.php

AtPIN
http://bioinfo.esalg.usp.br/atpin/atpin.pl
AtPid http://atpid.biosino.org/




Domain-Domain interaction Database

e iPfam,
http://www.sanger.ac.uk/Software/Pfam/
iPfam/

e 3did (domain interactions)
http://gatealoy.pcb.ub.es/3did/

 DIMA
http://webclu.bio.wzw.tum.de/dima/
downloads.jsp
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Random Networks

e Uniformly random network:
— distributes the edges uniformly among nodes.

* Probabilistic interpretation:

— There exists a set (ensemble) of networks with

given number of nodes and edges. Select a
random member of this set.



Random Networks
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P(K)

Node degrees in random graphs

Average degree:

(k)= p|V]
:I e Degree distribution:
‘.-‘.' <K> .\..
* Pk)~ ()p a-p)~ "

Most of the nodes have approximately the same degree.
The probability of very highly connected nodes is
exponentially small.



A scale free network

 Power-law degree distributions were found in
diverse networks
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A scale free network

 Power-law degree distributions were found in
diverse networks

log(P(k)) ~ -y log(k)

P(k)= ck™

Power-law degree distributions
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Scale Free
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Hub proteins=Essential proteins
* An essential gene is one that, when knocked out,
renders the cell unviable.

* Hub proteins are significantly enriched for essential
proteins. (Jeong et al. 2001, Nature 411,41)
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Average Degree

Essential proteins

Percentage of Hubs
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Hubs have high degrees

Essential genes have high
essentiality.

Yu (2004) Trends in Genetics, 20(6), 227



Hub proteins close to each other

* Hub proteins have lower average length of
shortest path among themselves than non-hub
proteins. (Moslov et al. 2002 Science 296, 910 )
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Clustering coefficient

Local clustering coefficient C; for a vertex v; is
given by the proportion of links between the
vertices within its neighborhood divided by

the number of links that could possibly exist
between them.

C=vovonn V




Static or Dynamic

e Combined PPl with gene expression profiles.

e Calculate co-express correlation between
hubs and their neighbors.

* Two types of hubs:

O ¢ o ?

o o o ® ® e
O X o °
Party Hub Date Hub

Han et al. (2004) Nature 430(6995):88-93



Gene Co-expression correlation
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Hub Co-expression correlation
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Date or Party Hubs

Party Hubs are expressed with

e their connection partners at same
time. They will form a large protein
complex. They are more essential.
Most of them are house keeping
genes.

Date Hubs bind with their different
connection partners at different

. time. They have many different
binding sites. They have more
disorder regions.



Network topology of hubs
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Hub proteins

* Multiple and repeated domains are enriched in

hub proteins —SiH i1 18—

* Long disordered regions are common in hubs.

B-Subunit

disordered regions are typically
involved in regulation, signaling and
control pathways in which interactions
with multiple partners and high-
specificity/low-affinity interactions are

Autoinhibitory ) { \.2 ft iSi
" < ibitory J'§ orten requisite.
"' n “‘\ 'I'. l“‘ Peptide C q

(Image adapted from: Kissinger CR, et al. 1995, "Crystal structures of human calcineurin and
the human FKBP12-FK506-calcneurin complex.” Nature 378:641-4.)

(Ekman et al. 2006 Genome Biol. 7(6): R45)



Hub proteins

Fraction of proteins

(a)

0.20
0.15
0.10

0.05

Repeating domains - DIP

L

PH: Party Hubs
DH: Date Hubs
NH: Non-hubs

nNwesEOD

Fraction of proteins

(c)

0.6
0.5
0.4
0.3
0.2
0.1

Disorder - DIP




Centrality of PPI

* |n yeast, worm, and fly PPl networks, the
number of degrees and the centrality of
proteins in the networks have similar
distributions.

e Essential proteins have significant centrality.

* Proteins that have a more central position in
all three networks, regardless of the number
of direct interactors, evolve more slowly and
are more likely to be essential for survival.

Hahn et al. (2004) Molecular Biology and Evolution, 22(4) 803.



Centrality

Measure of the centrality of a vertex within a
graph that determine the relative importance
of a vertex within the graph.

— Closeness centrality

— Betweenness centrality



Closeness centrality

* |tis defined as the average distance between
a vertex v and all other vertices reachable

from it.
 For a graph G: = (V,E) with n vertices, the
degree centrality C_(v) for vertex vis

A
[ [

dis(vi)

Be
C =-
C
n-1
A node is important if it has a small closeness centrality, C

because it is close to any other node.



Betweenness centrality

* Vertices that occur on many shortest paths
between other vertices have higher
betweenness than those that do not.

* For all node pairs (i, j), find the number of
shortest paths between them, o(i,j), and
determine how many of these pass through

node k -o,(i,)) C _E O’k(.l.,,.l.)
i,j G(l)J)

A node is important if it has a large Betweenness centrality,
because many shortest paths pass it.




Essentiality and Centrality

Betweeness
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Non-
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Non-
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Hahn et al. (2004) Molecular Biology and Evolution, 22(4) 803.
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Essentiality, Centrality,
slow evolution rate

- Betweeness -0.174 -0.118 -0.071
D, - Closeness -0.085 -0.114 -0.064
D, - Degrees -0.161 -0.027 -0.053

 |dentified orthologs of the proteins in the yeast, worm, and fly networks in the
related species S. paradoxus, C. briggsae, and D. pseudoobscura, respectively.

* D, =the number of nonsynonymous differences per nonsynonymous site. (that
changes amino acid). This is proportional to the evolution rate.

 Essential genes are house-keeping genes, have slow evolution rate.

Hahn et al. (2004) Molecular Biology and Evolution, 22(4) 803.



Evolution Rates of party or date hubs

| DateHubs | _PartyHubs

Dn 0.7597 0.5652
Ds 2.3133 2.4254
Dn/Ds 0.3631 0.2627

* The lowering of evolutionary rate of the party hub proteins
than the date hub proteins.

* Party hubs form a big protein complex; they are more
essential.

Dn: non-synonymous distance (changes amino acid)
Ds: Pairwise synonymous (do not change amino acid)

Kahali Et al (2009) Gene, 429, 18



PPl Network topology

* Global protein interaction network is highly
interconnected and hence interdependent,
more like the continuous dense aggregations
of stratus clouds than the segregated
configuration of altocumulus clouds.

Batada et al. (2006) PloS Biology, 4(10), €137



Altocumulus or Stratus

altocumulus stratus

highly interconnected and
hence interdependent



Fault tolerance of PPl Networks

* Whether there exist alternative pathways that
can perform some required function if a gene
essential to the main mechanism is defective,
absent or suppressed.

http://www.ncbi.nlm.nih.gov/pubmed/19399174

Brady et al. (2009) Plos One, 4(4) e5364
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Function prediction




Function prediction

* Direct Methods
— Neighborhood based Methods
— Graph theory methods
— Probabilistic Methods

* Module assisted methods
— General Methods
— Hierarchical clustering based
— Graph clustering methods
— Expansion of complex seeds



Neighborhood based methods

* Decides the function of a protein from a
set of known functions of its neighbors.



Neighborhood based methods (1)

* Predicts for a given protein up to three
functions most common among its
neighbors.

° 4 Red neighbors, that is

o larger then the threshold
. 3

Schwikowski et al (2000) Nature Biotech. 18, 1257.



Prediction of function by direct and
indirect protein interactions

* YHR105W, YPL246C, and YGL161C are proteins of unknown
function. Akr2 is a protein involved in endocytosis and
therefore suggests a function for YHR105W. This potential
function is supported by indirect interactions with Yptl,
Vam7, Yipl, and Pep12, which have been also implicated in
vesicular transport and/or membrane fusion.

Yptl Akr2 Yip1

YPL246C —— YHR105W — YGL161C

Vam7 Pep12

Schwikowski et al (2000) Nature Biotech. 18, 1257.



Neighborhood based methods (2)

* Examine the neighborhood of a protein and
compute scores for a certain function to see if
this function is enriched in this neighborhood.

* For a protein, each function fis assigned a score
(nf-ef)z/ef. If this score is larger than a threshold,
the protein has this function.

* n.is the number of neighbor proteins that have
the function f

* €;is the expectation of this number based on the
frequency of f among the network’s proteins.
@

— ne= 4 for red function

¢ & Hishigaki et al (2001) Yeast 2001,18:523-531.



Neighborhood based methods (3)

* Considers level 1 and level 2 neighborhood of a
target protein.

* Level-1 neighbors that are also Level-2 neighbors
are the highest likelihood of sharing functions
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Chua et al. (2006) Bioinformatics, 22(13),1623



Function prediction

* Direct Methods
— Neighborhood based Methods
— Graph theory methods
— Probabilistic Methods

* Module assisted methods
— General Methods
— Hierarchical clustering based
— Graph clustering methods
— Expansion of complex seeds



Graph theory Methods

* In contrast to local, neighborhood counting

methods, these approaches are global, and
take into account the global topology of

the network.



Graph theory Methods

* Minimum multi-way cut.

Function unknown proteins

Vazquez et al (2003) Nature Biotech, 21, 697



Graph theory Methods

* Minimum two-way cut.

Karaoz et al (2004)



Predict pathogenic genes

* A network approach to predict pathogenic
genes for Fusarium graminearum. (Liu et al.
Plos One, 2010, 5(10))

* Fusarium graminearum is the pathogenic
agent of Fusarium head blight (FHB), which is
a destructive disease on wheat and barley

e Aim: with a network of Fusarium and 49

known pathogenic genes, can we predict
more pathogenic genes?



Pathogenic gene interaction network

@ B sced pathogenic genes

I Genes interacting with at least two seed genes
Genes interacting only one seed genes



Function prediction

* Direct Methods
— Neighborhood based Methods
— Graph theory methods
— Probabilistic Methods

* Module assisted methods
— General Methods
— Graph clustering methods
— Expansion of complex seeds



Interaction Network Is Made of Modules

Computer Circuit Boards

Bar-Joseph et al, Nature Biotech. 2003
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Protein Complex

e 12-subunit RNA Polymerase Il

PDB: 2B8K



General Methods

* Find regions that have high clustering coefficient.
MCODE, Bader and Hogue (2003) BMC

Bioinformatics, 4:2.

* Define a Cluster property score. Starting from single
nodes, clusters are gradually grown as long as the
cluster property of the added nodes and the density of
the cluster both exceed a certain threshold. Altaf-Ul-
Amin et al (2006), BMC Bioinformatics, 7:207

 Each candidate set of proteins is a assigned a
likelihood ratio score that measures its fit to a protein
complex model. NetworkBlast, Sharan et al (2005),
J. Computational Biology, 12(6), 835.



Graph clustering methods

Use shortest path length between proteins as a
distance, and conduct the clustering procedure.
Arnau et al (2005) Bioinformatics, 21, 364.

Superparamagnetic clustering (SPC). Spirin and
Mirny (2003) PNAS, 100, 12123.

highly connected subgraphs (HCS) algorithm.
Przulj et al (2004), Bioinformatics, 20, 340

The restricted neighborhood search clustering
(RNSC) algorithm. King et al. (2004), 20, 3013

The Markov clustering (MCL) algorithm. Enright
et al. (2002), Nucleic Acid Research, 30, 1575



Expansion of complex seeds

In contrast to finding complexes de novo in the protein
interaction network, several works attempted prediction of
new members for partially known protein complexes.

SEEDY: constructs complexes by adding proteins to a given
seed, as long as the reliability of the most reliable path
from a candidate to the seed does not fall below a given
threshold. Bader (2003) Bioinformatics, 19, 1869

Complexpander: start from a particular ‘core’ set of
proteins and produces a list of candidate proteins, ranked
by the probability of membership in the complex. Asthana
et al (2004) Genome Research 14, 1170

For a given “seed”, the algorithm expands it through a
breadth-first-search graph traversal. Wu and Hu

(2005) IEEE Symposium on Computational Intelligence in
Bioinformatics and Computational Biology 135.



