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Outline	

•  Protein-Protein	Interac-on	Model	
•  How	to	get	PPI	

–  Experimental	methods	(	methods,	results,	assessing	
and	filtering	)	

–  Bioinforma-c	methods	
•  PPI	databases		
•  network	proper-es	
•  Analysis	method	
•  Integra-on	with	other	omic	data	



Graph	Model	

Vertex		
Edge	



Yeast	protein	interac-on	network	



What	kind	of	interac-ons?	

•  Protein	Physical	Interac-ons	
– Protein-protein	binding	
– Enzyme	and	its	substrates	
– Enzyme	and	its	inhibitor		
– Protein	Chaperon	
– Protein	complexes	



Protein	Binding	

•  L-protein	and	ubiqui-n	

PDB:	3PRP	



Protein	Binding	

•  NtrC1	ATPase	domains	form	a	Heptamer	

3M0E	



Enzyme	and	its	substrate	
•  Cell	division	protein	kinase	9	and	Cyclin-T1	
•  Trigger	Mcl-1	Down-Regula-on	and	Apopto-c	Cell	
Death	in	Neuroblastoma	Cells	

PDB:	3LQ5	



Enzyme	and	its	inhibitor		
•  Xylanase	is	a	class	of	enzymes	which	degrade	the	
linear	polysaccharide	beta-1,4-xylan	into	xylose,	
thus	breaking	down	hemicellulose,	one	of	the	
major	components	of	plant	cell	walls.	

TAXI	(Inhibitor)		

Xylanase	(Enzyme)	

PDB:	2B42	



Protein	Chaperone	

•  Complex	between	the	BAG5	BD5	and	Hsp70	NBD	

PDB:	3A8Y	



Protein	Complex	
•  12-subunit	RNA	Polymerase	II	

PDB:	2B8K	



Protein	Complex	
•  What	is	the	connec-on	density	for	this	graph?	
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Permanent	or	Transient	interac-ons	

Perkins	et	al.	Structure	(2010)	



Permanent	or	Transient	interac-ons	

Perkins	et	al.	Structure	(2010)	

• 	Difficult	to	measure	the	transient	
interac-ons.	
• 	How	to	dis-nguish	permanent	and	transient	
interac-ons	in	PPI	network?		



What	kind	of	informa-on	PPI	network	
cannot	provide?	

•  Protein	binding	affinity?						
•  Network	topology?	
•  Protein	binding	
interface?	

•  Protein	func-on?	

No	

Yes	

We	will	try	

No	



PPI	networks	for	en-re	genomes	
•  The	poten-al	number	of	interac-ons	is	huge,	and	the	

number	of	real	interac-ons	is	probably	very	large.	

–  ∼16	000–26	000	different	interac-on	pairs	in	the	yeast.	Grigoriev	
Nucleic	acid	Research	(2003)	

–  ~600,000-250,000,000		interac-on	pairs	in	human	genome.		

•  However,	the	current	status	to	the	knowledge	of	those	
interac-ons	is	s-ll	poor;	only	a	small	por-on	of	those	
protein	interac-on	pairs	have	been	discovered.	

•  The	large	amount	of	interac-on	pairs		is	also	a	
challenge	to	study	them.	The	“network”	is	a	suitable	
tool	to	study	on	the	PPI	data.	



Outline	

•  Protein-Protein	Interac-on	Model	
•  How	to	get	a	PPI	network	

– Experimental	methods:	Y2H,	MS	etc.	
– Bioinforma-c	methods	

•  PPI	databases	and	network	proper-es	
•  Analysis	method	
•  Integra-on	with	other	omic	data	



Experimental	methods	
•  Co-immunoprecipita.on	is	considered	to	be	the	gold	standard	

assay	for	protein–protein	interac-ons,	especially	when	it	is	
performed	with	endogenous	(not	overexpressed	and	not	
tagged)	proteins.	

•  Pull-down	assays	are	a	common	varia-on	of	
immunoprecipita-on	and	are	used	iden-cally,	although	this	
approach	is	more	amenable	to	an	ini-al	screen	for	interac-ng	
proteins.	

•  Chemical	cross-linking	is	omen	used	to	"fix"	protein	
interac-ons	in	place	before	trying	to	isolate/iden-fy	interac-ng	
proteins.	

•  Yeast	two-hybrid	assay	
•  Tandem	Affinity	purifica.on	
•  Protein	microarray	
•  Phage	display	



Yeast	Two-hybrid	Assay	

Promoter	

DBD	

DBD	:DNA	binding	domain	
TAD:	Transcrip-onal	Ac-va-on	domain	

DNA	

RNA	



Yeast	Two-hybrid	Assay	

DBD	

B	:Bait	
P:	Prey	

DBD	

B	

P	

DBD	

B	

Two	proteins	to	be	tested	

P	



Yeast	Two-hybrid	Assay	

B	P	

Transcrip-on	factor:	Gal4		
Reporter	gene:		LacZ		

Promoter	

DBD	 DNA	

RNA	

Reporter	Gene	

B	
P	



Yeast	Two-hybrid	Assay	



Yeast	Two-hybrid	Assay	

What	does	this	matrix	is?		



Yeast	2-hybrid	Assay	

•  Pros	
– Easy/fast	
– No	purifica-on	required	
–  In	vivo	condi-ons	
– Can	be	adapted	for	high	throughput	screens	
– Can	detect	transient	interac-ons	



Yeast	2-hybrid	Assay	
•  Cons	

–  prone	to	false	nega-ves	because			
•  protein	doesn’t	fold,		
•  protein	doesn’t	localize	to	nucleus,			
•  interference	from	endogenous	protein,		
•  fusion	protein	doesn’t	interact	like	na-ve	protein,		
•  fusion	may	be	toxic	to	cell	

–  prone	to	false	posi-ves		
•  auto-ac-va-on		
•  indirect	interac-ons			

–  not	quan-ta-ve		
–  no	control	over	post-transla-onal	modifica-ons		
–  only	test	binary	interac-ons		



Yeast	2-hybrid	assay	for	an	en-re	
genome		

Uetz	et	al.	Nature	(2000)	403,	623-627		
Two	strategies:		
1.  “array”	approach:	~6,000	ac-va-on	domain	hybrid	

transformants	mated	to	192	DNA	binding	domain	fusion	
transformants	only	20%	of	interac-ons	(281)	
reproducible	(many	auto-ac-vate),	and		3.3	posi-ves	
per	interac-on-competent	protein		

2.  “high-throughput	screen”	approach:		5,345	ORFs	cloned	
separately	into	DNA-binding	and	ac-va-on	domain	
plasmids	(2	reporter	genes);	DBD	fusions	pooled	and	
mated	to	AD	fusions;	12	clones	per	pool	sequenced,	
gave	692	unique	interac-ons	(472	seen	more	than	once)	
1.8	posi-ves	per	interac-on-competent	protein.	



Experimental	methods	
•  Co-immunoprecipita.on	is	considered	to	be	the	gold	standard	

assay	for	protein–protein	interac-ons,	especially	when	it	is	
performed	with	endogenous	(not	overexpressed	and	not	
tagged)	proteins.	

•  Pull-down	assays	are	a	common	varia-on	of	
immunoprecipita-on	and	are	used	iden-cally,	although	this	
approach	is	more	amenable	to	an	ini-al	screen	for	interac-ng	
proteins.	

•  Chemical	cross-linking	is	omen	used	to	"fix"	protein	
interac-ons	in	place	before	trying	to	isolate/iden-fy	interac-ng	
proteins.	

•  Yeast	two-hybrid	assay	
•  Tandem	Affinity	purifica.on	(TAP)	
•  Protein	microarray	
•  Phage	display	



Tandem	Affinity	Purifica-on	(TAP)		

•  Most	proteins	interact	with	several	other	
proteins	(es-mate	2-10).		

•  Many	proteins	in	the	cell	are	found	in	complexes.	
For	some	purposes,	knowing	the	iden--es	of	the	
members	of	the	clusters	is	as	useful,	or	more	
useful,	than	knowing	the	directly	interac-ng	
partners.		

•  Tandem	Affinity	purifica-on	(TAP)	is	a	method	for	
characterizing	the	clusters	directly,	rather	than	
one	interac-on	at	a	-me.		



TAP/MS	spectrometry		



TAP/MS	spectrometry	for	an	en-re	
genome		

•  Gavin	et	al.	Nature(2002)	415,	141-147;		
–  Cellzome	1,167	bait	proteins		in	Yeast	genome	
–  TAP	tag	inserted	at	3’	end	of	gene;	proteins	under	endogenous	

promoter	2	rounds	of	purifica-on		
–  232	dis-nct	complexes	with	2	to	83	proteins	per	complex	new	cellular	

role	proposed	for	344	proteins		
–  To	assess	confidence:		
					Repeat	the	experiment	-only	70%	reproducible	using	the	same	bait	

Use	different	proteins	in	the	complex	as	the	bait,	see	if	we	can	recover	
the		same	proteins	in	the	complex.		

•  Ho	et	al.	Nature(2002)	415,	180-183;			
–  725	bait	proteins	in	yeast;	1,578	interac-ng	proteins	FLAG	tag,	

proteins	transiently	overexpressed		
–  To	assess	confidence:	74%	of	interac-ons	reproducible	in	small	scale	

co-IP/blot	



TAP/MS	assay	

•  Pros	
– get	the	whole	complex	
– Proteins	are	likely	to	share	a	func-on		
–  	very	sensi-ve	-can	detect	~15	copies	per	cell	
–  in	vivo	condi-ons	
– can	be	adapted	for	high-throughput	screens		



TAP/MS	assay	

•  Cons	
–  doesn’t	determine	direct	or	indirect	interac-ons		
–  not	reliable	for	small	proteins	(<	15	kD)	
–  	affinity	tag	may	interfere	with	interac-ons	or	with	
the	func-on	of	essen-al	proteins	

–  prone	to	false	posi-ves,	e.g.	“s-cky”	proteins	
–  prone	to	false	nega-ves		

•  won’t	get	every	protein	every	-me		
•  complex	must	survive	purifica-on		

–  not	quan-ta-ve	



Overlap	of	high-throughput	
interac-on	studies	is	LOW		

data	from	Salwinski	&	Eisenberg,	Current	
Opinion	in	Structural	Biology	(2003)	13,	
377-382		



Conclusions	

•  Lots	of	protein-protein	interac-on	data	are	now	
available	for	yeast,	but	it	is	not	very	reliable	and	
not	comprehensive.	

•  Need	addi-onal	accessing	and	filtering	steps.	
•  Nevertheless,	these	data	have	inspired	the	
development	of		many	computa-onal	methods.		

•  To	facilitate	computa-onal	analysis,	need	to	
disseminate	the		data	in	a	usable	form!	This	is	
omen	a	rate	limi-ng	step	in	systems	biology.	



High	throughput	interac-on	data	

•  Not	reliable	
•  Noisy	

•  Computa-onal	methods	for	improving	the	
quality	of	interac-on	data	
– Assessment	and	valida-on	



Assessing	and	filtering	Criteria	

•  Promiscuity	criteria	
•  Overlap	criteria	
•  Topology	criteria	



Assessing	and	filtering	Criteria	
•  Promiscuity	criteria	

–  In	most	high-throughput	interac-on	studies,	a	few	
proteins	are	observed	to	interact	promiscuously.		
Generally	these	are	removed	from	the	analysis.		

–  Problem:	some	interac-ons	may	be	real!		
•  Examples:	

–  Using	TAP/MS	even	without	a	bait,	17	proteins	were	found	
in	pull-downs	by	Gavin	et	al.		49	other	proteins	found	to	
have	a	similar	frequency	of	interac-on	to		these	false	
posi-ves	were	thrown	out.		

–  Using	Yeast	2-hybrid,	proteins	were	observed	to	make	
many	interac-ons	in	many	screens	usually		discarded	as	
probably	false	posi-ves.	



Assessing	and	filtering	Criteria	

•  Promiscuity	criteria	
•  Overlap	criteria	
•  Topology	criteria	



Assessing	and	filtering	Criteria	

•  Overlap	criteria		
– An	interac-on	has	higher	possibility	to	be	real	if	
two	different	types	of	methods	discover	it.	

•  Methods:	
– With	interac-on	data.			
– With	non-interac-on	data.			



Assessing	and	filtering	Criteria	
With	interac-on	data:	
intersec-on	is	low!			
	E.g.	compare	Y2H	and	TAP/MS.	Unfortunately,		
overlap	is	low.		



Assessing	and	filtering	Criteria	

•  Overlap	criteria		
•  Methods:	

– With	non-interac-on	data.		
•  Expression	Profile	Reliability	(EPR)	
•  Homology	methods	-Paralogous	Verifica-on	(PVM)	
•  Domain	Pair	Verifica-on	(DPV)	

Deane	et	al.	(2002)	Mol.	Cell.	Proteomics		



Expression	Profile	Reliability	(EPR)	

•  Expression	Profile	Reliability	Index	(EPR	
Index)	evaluates	the	quality	of	a	large-scale	
protein-protein	interac-on	data	sets	by	
comparing	the	expression	profile.	

•  Two	proteins	have	high	possibility	to	interact	
with	each	other,	if	they	co-express.	



EPR	

Deane	et	al.	(2002)	Mol.	Cell.	Proteomics		

Collect	the	mRNA	expression	levels	of	the	
interac-on	pairs	under	several	condi-ons,	and	
calculate	their	expression	correla-ons.		



Paralogous Verification Method (PVM) 

Count	the	number	of	paralogous	interac-ons,	
If	the	PVM	score	=2,	they	have	a	interac-on.	

Homologous	sequences	are	paralogous	if	they	were	separated	by	a	gene	
duplica-on	event:	if	a	gene	in	an	organism	is	duplicated	to	occupy	two	different	
posi-ons	in	the	same	genome,	then	the	two	copies	are	paralogous.	



Paralogous Verification Method (PVM) 

•  	PVM	is	very	accurate;	if	a	pair	scores	by	PVM,	
it	is	almost	certainly	a	true	interac-on.	

•  PVM	does	not	have	good	coverage;	it	is	not	
sensi-ve.	PVM	only	confirms	around	50%	
high-confidence	samples.	This	is	because	
many	examples	of	paralogous	complexes	are	
sparse.	



Domain Pair Verification (DPV) 

•  If	two	domains	have	an	interac-on,	any	two	proteins	that	
have	those	two	domains	also	have	interac-ons.	

•  Protein	3D	structures	can	provide	the	atomic	detains	for	
protein	interac-ons.	

•  The	solved	structures	most	are	a	single	domain	instead	of	a	
full	length	protein.	 Domain	A	 Domain	B	

P1	 P2	

P1	

P2	



Assessing	and	filtering	Criteria	

•  Promiscuity	criteria	
•  Overlap	criteria	
•  Topology	criteria	



A	scale	free	network	

•  Power-law	degree	distribu-ons	were	found	in	
diverse	networks		



Topology	criteria	
•  Use	informa-on	about	the	observed	vs.	expected	
interac-on	network.		

Bader	et	al.	Nature	Biotechnology	(2003)	22,	78-85	



Outline	

•  Protein-Protein	Interac-on	Model	
•  How	to	get	PPI	

– Experiments:	Y2H,	MS,	etc.	
– Bioinforma-cs	

•  PPI	databases	and	network	proper-es	
•  Analysis	method	
•  Integra-on	with	other	omic	data	



Why	do	we	need	bioinforma-cs	way	
to	generate	PPI	networks?	

•  Only	model	organisms	have	high	throughput	
PPI	data.	For	example,	yeast	and	human.	How	
about	maize?	

•  High	throughput	method	is	expensive	and	
-me	consuming.	



Bioinforma-cs	methods	

•  Homologous	method	to	find	Orthology		
•  Combina-on	with	other	informa-on,	such	as	
expression	profile,	GO	annota-ons.		

•  Predic-on	
– Sequence	method	
– Structural	based	method	

•  Text	mining	



An	example:	Rice	PPI	
•  hxp://www.harvest-web.org/	

Rice ATH      
Os.3420.1 AT3G12110.1               

… …              
Os.52771.1 AT5G60390.3               
Os.55715.1 AT1G16300.1               
Os.5492.1 AT3G56070.2 

… …              

AT3G12110.1	

AT1G16300.1	

Os.3420.1	

Os.55715.1 

15000	7000	



Bioinforma-cs	methods	

•  Homologous	method	to	find	Orthology		
•  Predic-on	

– Sequence	method	
– Structural	based	method	

•  Text	mining	
•  Infer	from	other	networks,	such	as	expression	
profile,	GO	annota-ons.		



Predic.ng	protein-protein	
interac.ons		

•  Sequence	methods		
•  How	can	you	predict	that	an	interac-on	might	
occur	between	two	proteins	based	purely	on	
sequence	data?		

Valencia	&	Paz	o	s,	(2002)		Current	Opin	ion	in	
Structural	Biolog	y	12,	368-373		
Skrabanek	et	al.	(2008)	Mol	Biotechnol.	38(1):1-17.		



Predic-on	PPI	with	sequences	

•  Gene	neighborhood		
•  Gene	fusions	
•  Phylogene-c	profiles			
•  Co-evolu-on	
•  Correlated	Muta-on	
•  Domain	interac-on	



Predic-on	PPI	with	sequences	
•  Gene	neighborhood		

–  for	bacteria,	the	arrangement	of	genes	in	operons	
means	that	interac-ng	proteins	are	omen	encoded	
in	adjacent	sites	in	the	genome		

Protein	A	



Predic-on	PPI	with	sequences	

•  Gene	fusions	
– genes	encoding	interac-ng	proteins	in	one	
organism	are	some-mes	fused	into	a	single	gene	
in	another.	Look	for	these	occurrences.		

Org	1	
Protein	A	 Protein	B	

Org	2	
Protein	AB	

Protein	A	 Protein	A	



Predic-on	PPI	with	sequences	

•  Phylogene-c	profiles			
– based	on	the	joint	presence/absence	of	a	pair	of	
proteins	in	a	large	number	of	genomes.	



Predic-on	PPI	with	sequences	

•  Co-evolu-on	
– as	assessed	by	similarity	of	phylogene-c	trees.	
“mirrortree”	method	compares	the	distance	
matrices	for	genera-ng	trees;		

A	 B	

Evolu-on	distance	
Matrix	

Di
st
an
ce
s	f
or
		A

	
Distances	for		B	

Protein	A	 Protein	B	



Predic-on	PPI	with	sequences	
•  Correlated	muta-ons		

–  the	idea	is	that	interac-ng	posi-ons	on	different	
proteins	should	co-	evolve	so	as	to	maintain	the	
interface.		Look	for	correla-on	between	sequence	
changes	at	one	posi-on	and	those	at	another	posi-on	
in	a	mul-ple	sequence	alignment.		

Süel	et	al.		(2002)	Nature	Strut.	Bio.	
Pazos	&	Valencia	(2002)	Proteins	



Prediction PPI with Sequence 
 •  Domain	interac-on,	similar	to	Domain	Pair	Verifica-on	

(DPV)	
•  If	two	domains	have	an	interac-on,	any	two	proteins	
that	have	those	two	domains	also	have	interac-ons.	

•  Protein	3D	structures	can	provide	the	atomic	detains	
for	protein	interac-ons.	

•  The	solved	structures	most	are	a	single	domain	instead	
of	a	full	length	protein.	 Domain	A	 Domain	B	

P1	 P2	

P1	

P2	



	predic-on	of	host-pathogen	PPI	

•  Plasmodium	falciparum	is	responsible	for	the	
most	severe	form	of	malaria.	

•  Host-pathogen	PPs	play	a	vital	role	in	ini-a-ng	
infec-on.	

•  Integrate	intra-species	PPI	datasets	with	
protein–domain	profiles	to	predict	host-
pathogen	PPI	networks	

Dyer	et	al.	(2007)	Bioinforma-cs	12(13)	i159	



Predic-on	of	Pathogen-Host	PPI	

Domain		
A	 Domain		

B	

Species		1	 Species		B	

Human	protein	

Domain		
A	

Domain		
B	

Pathogen	protein	

…	
	
	
…	
…	

…	
	
	
…	
…	



	predic-on	of	host-pathogen	PPI	

Dyer	et	al.	(2007)	Bioinforma-cs	12(13)	i159	



Predic-on	PPI	with	sequences	

•  Problems:	they	need	lots	of	sequences,	and	
the	methods	are	very	sensi-ve	to	the	
alignment	method	we	used.		



Web	tools	for	PPI	predic-on	with	
sequences	

•  AllFUSE	(Enright	et	al.	2001,	Gene	fusions,	
hxp://www.ebi.ac.uk/research/cgg/allfuse/)	

•  STRING	(Snel	et	al.	2000,	Gene	Co-Localiza-on,	gene-
fusion,	phylogene-c	profiles,	
hxp://www.bork.embl-heidelberg.de/STRING/)	

•  WIT	(Overbeek	et	al.	2000,	Orthology/phylogene-c	
profiles/gene	co-localiza-on,	
hxp://wit.mcs.anl.gov/WIT2/)	

•  Predictome	(Mellor	et	al.	2002,	Gene	Co-Localiza-on,	
gene-fusion,	phylogene-c	profiles,	
hxp://predictome.bu.edu/)	

•  COGs	(Tatusov	et	al.	1997,	Orthology/phylogene-c	
profiles,	hxp://www.ncbi.nlm.nih.gov/COG/)		


