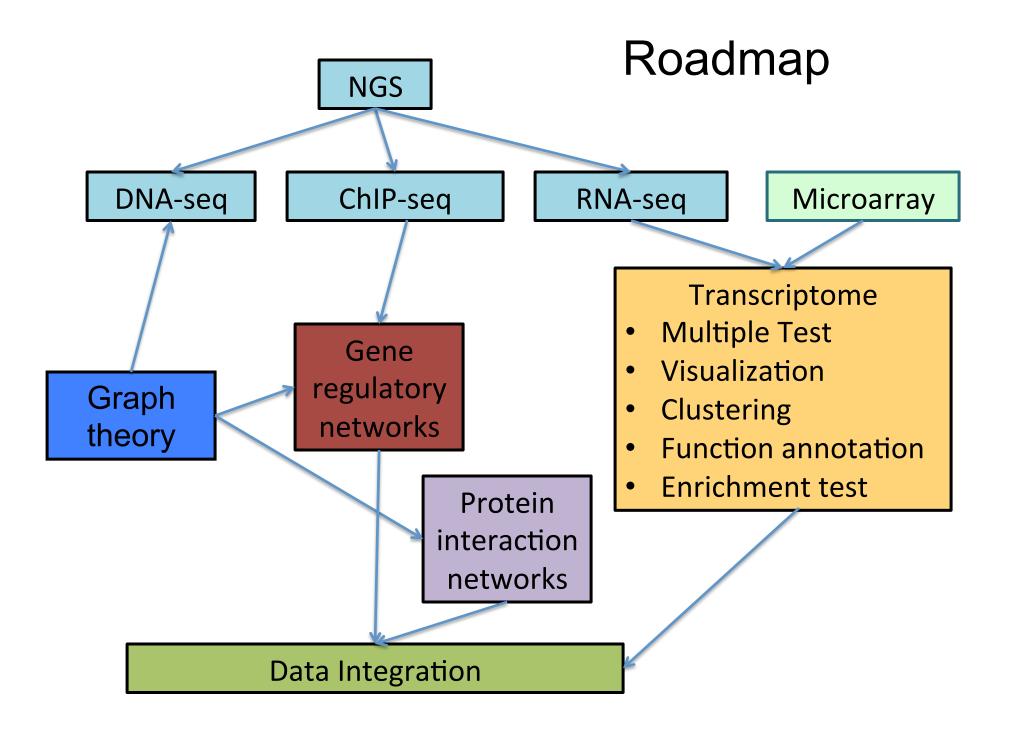
Graph Theory

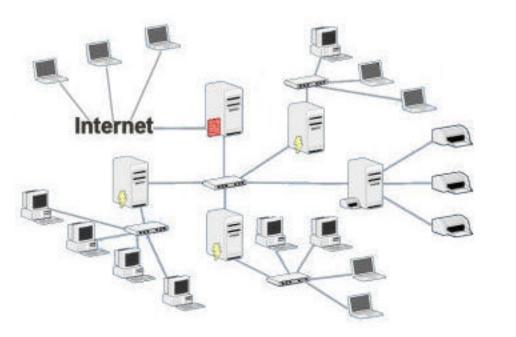
Lecture 1

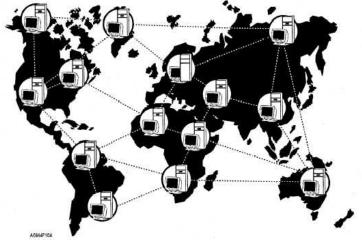


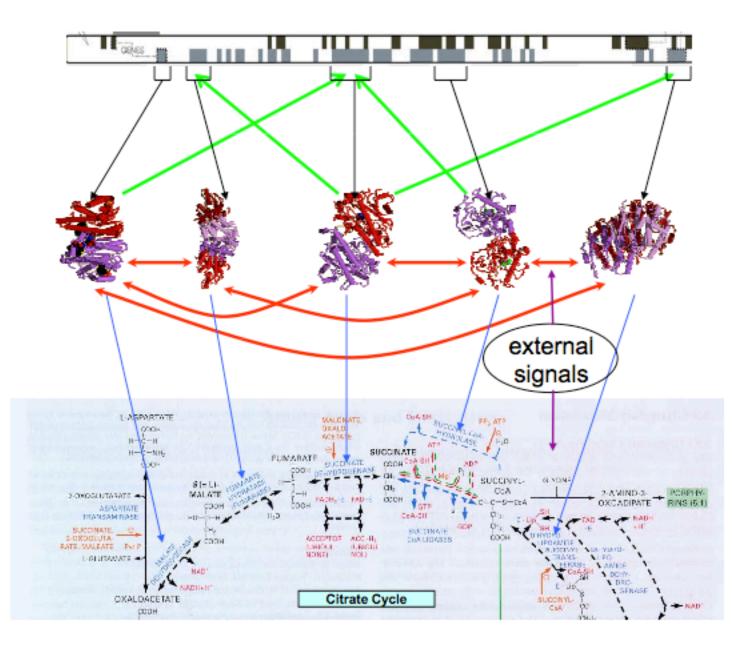
Many complicate systems have an underlying network topology

- Computer networks
- Social networks
- Biological networks
 - Food webs (chains)
 - Gene networks
 - Protein interaction networks
 - Signal transduction networks

Computer networks







GENOME gene regulation

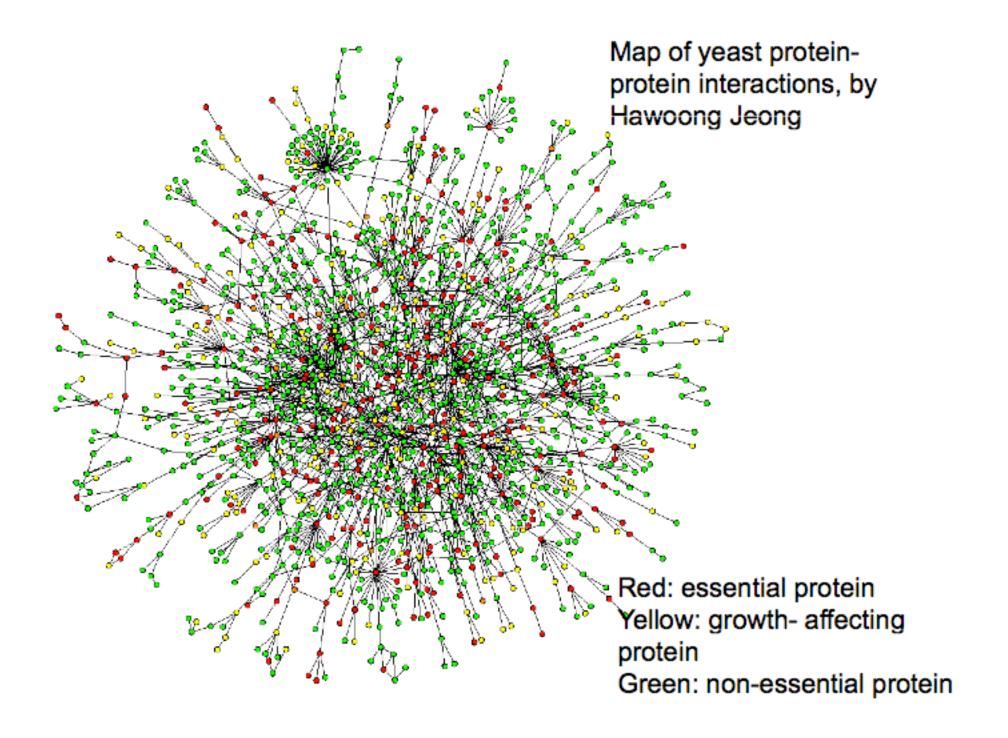
PROTEOME

protein-protein interactions

signal transduction

METABOLISM

Bio-chemical reactions



Why study networks?

- It is increasingly recognized that complex systems cannot be described in a reductionist view.
- Understanding the behavior of such systems starts with understanding the topology of the corresponding network.
- Topological information is fundamental in constructing realistic models for the function of the network.

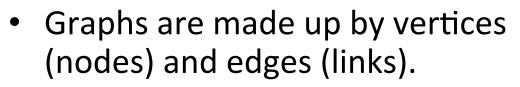
Network related questions

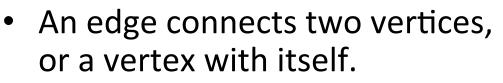
- How do we determine or infer network topology ? How do we build a network?
- How can we quantitatively describe large networks?
- How did networks get to be the way they are?
- What are the consequences of a specific network organization?

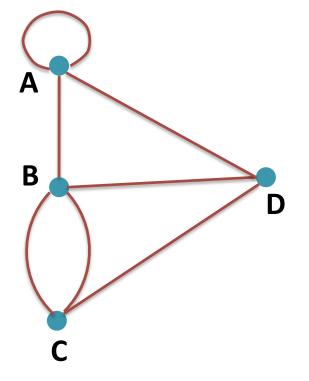
Graph Theory

- Some basic concepts of Graph theory
- Some examples of Special graphs
- Graph paths and cycles
- Graph connectivity
- Tree and Bipartite graph
- Network models

Graph concepts

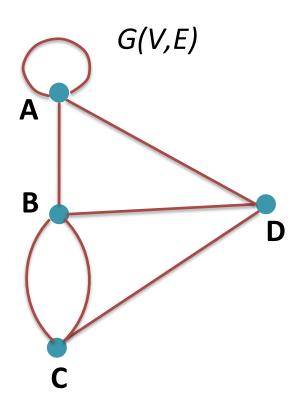






G=(V,E)V: a finite set of vertices.E: edges of the graph

Graph concepts: some terms



• Order of graph G: the number of all vertices,

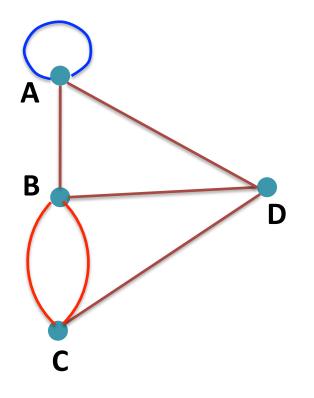
 $V_G = |V|$

• Size of graph: the number of all edges,

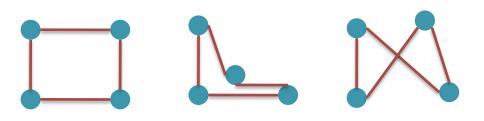
 $e_G = |E|$

 For an edge *e=uv*, the vertices *u* and *v* are the Ends of this edge; *u* and *v* are neighbors.

Graph concepts

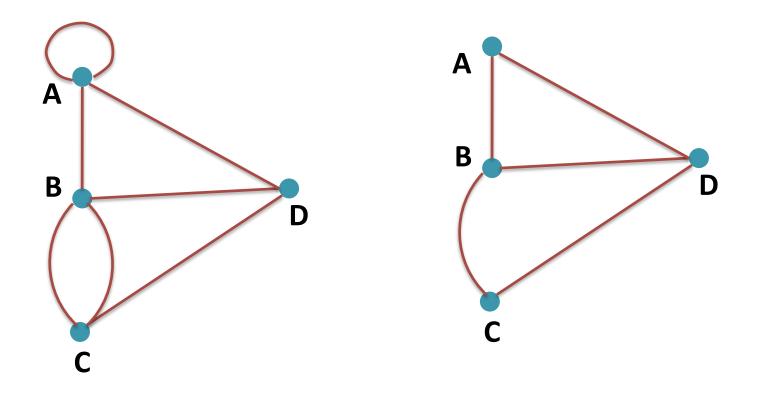


- Edges between B and Cmultiple edges
- AA loop
- The shape of the graph does not matter; only the way the nodes are connected to each other.

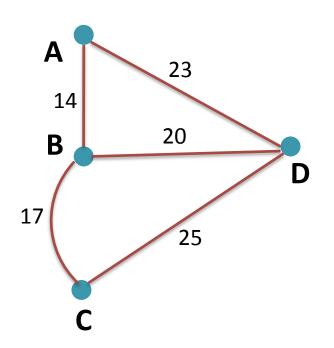


Simple graph

• A simple graph does not have loops (self edges) and multiple identical edges.

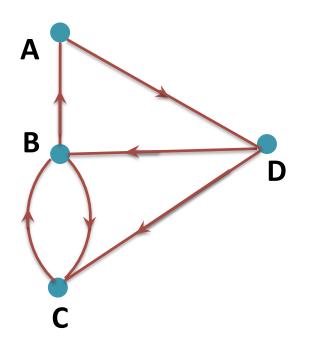


Weighted graph



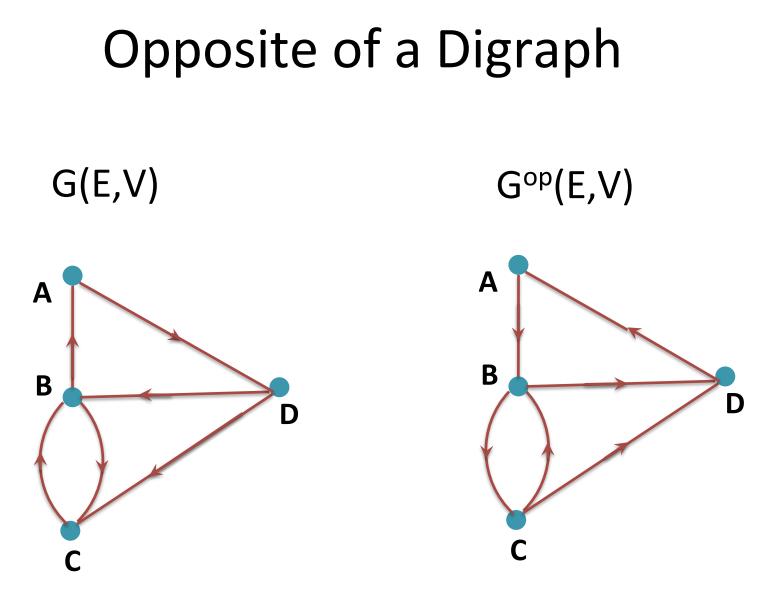
- A edge has a weight value.
- In some applications, the weights, e.g., correspond to travel costs or geographical distances.

Directed Graph (Digraph)



- Edges have directions, where the edges are drawn as arrows.
- The edges in the digraph are also called "arcs".
- A digraph can contain edges BC and CB of opposite directions.

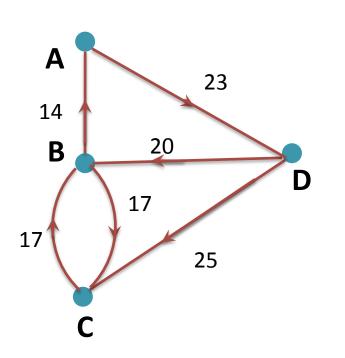
Question: Is this a simple graph?



All vertices are same, but the arrows reversed.

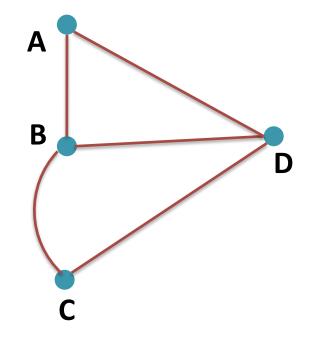
Weighted Digraph

• Edges have both weights and directions.

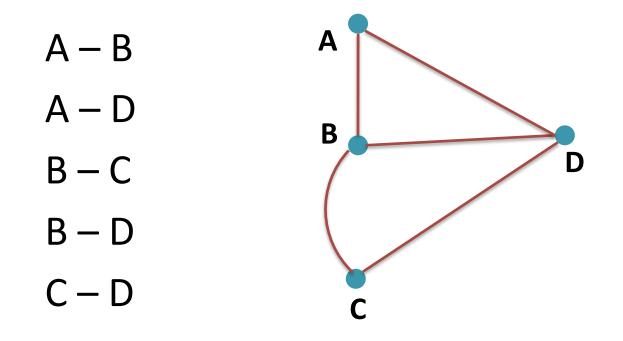


Representations of a graph

- Plane figures.
- List of edges.
- Adjacency matrix.



Representations: List of edges



Representations: adjacency matrix

Α В С D Α Α 1 1 Β 1 1 В 1 D С 1 1 С D 1 1 1

(1) Symmetric matrix.

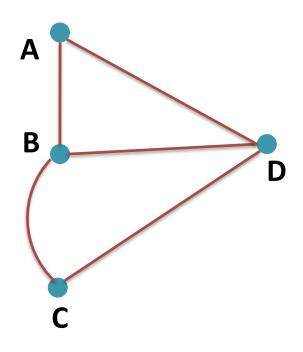
(2) What does it mean if there is a number for a diagonal entry?

Representations: adjacency matrix for a digraph

A		A	В	С	D
	А				A->D 1
	В	B->A 1		B->C 1	
	С		C->B 1		
	D		D->B 1	D->C 1	

This matrix is not necessary to be symmetric.

Node degrees



- Neighborhood: all neighbors of a node.
- Degree: the number of edges connected to the nodes; the number of neighbors of a node (vertex).
- Maximum degree and minimum degree. In a graph, the largest degree and the smallest degree.

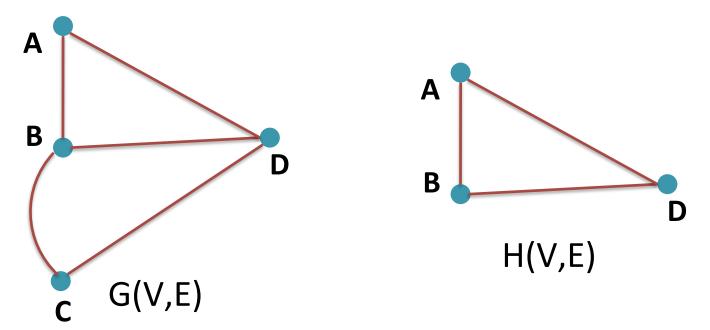
Degrees in the adjacency matrix

A B C

		A	В	С	D
	A		1		1
	В	1		1	1
	С		1		1
	D	1	1	1	
Degr	ees:	2	3	2	3

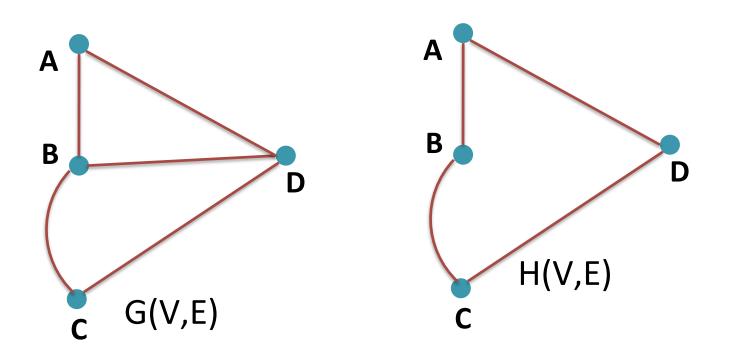
Subgraph

If H is a subgraph of G, V(H) ⊆ V(G) and
 E(H) ⊆ E(G).



Spanning Subgraph

If *H* is a spanning subgraph of *G*,
 V(H)=V(G) and E(H) ⊆ E(G).



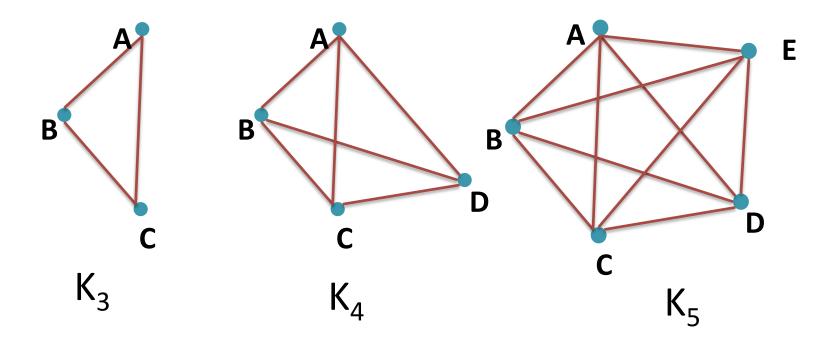
Special graphs

- Trivial graph
- Complete graph
- Connected and disconnected graph
- Trees
- Bipartite graph
- Regular graph
- Line graph

Trivial graph

A

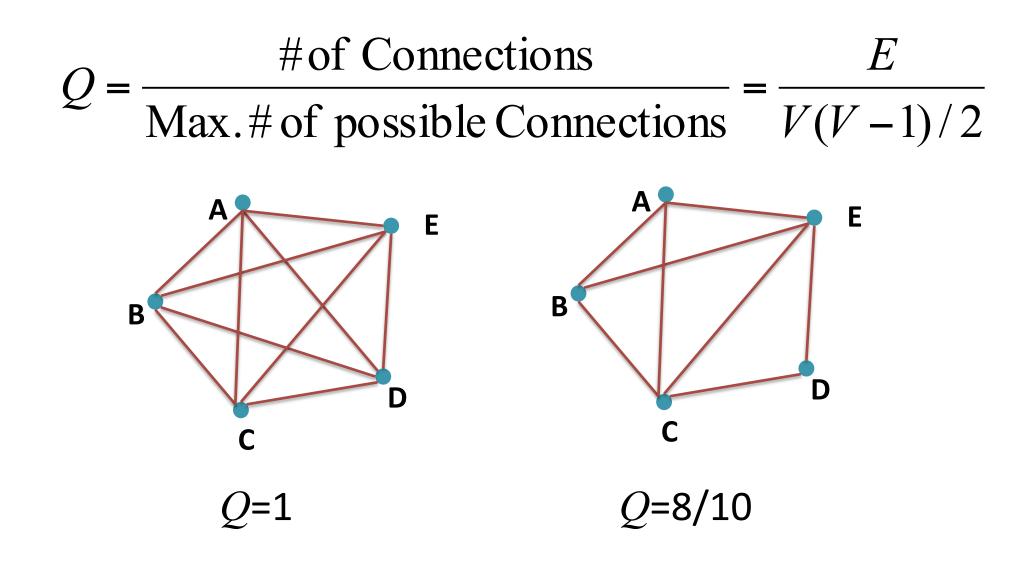
Complete graph (clique)



What the total number of edges in a complete graph?

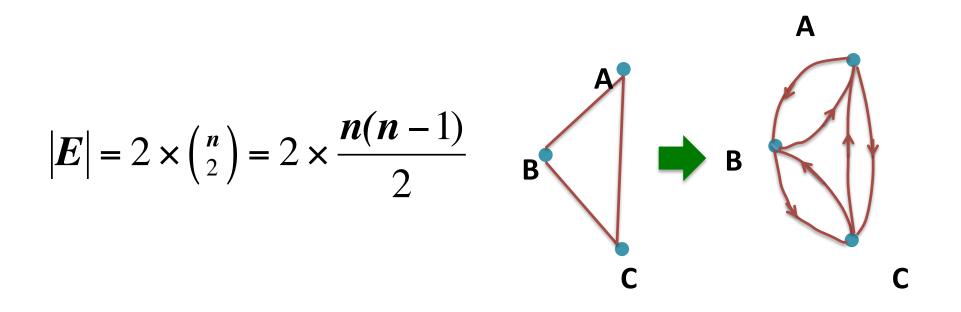
$$|\mathbf{E}| = \binom{n}{2} = \frac{\mathbf{n}(\mathbf{n}-1)}{2}$$

Connection Density

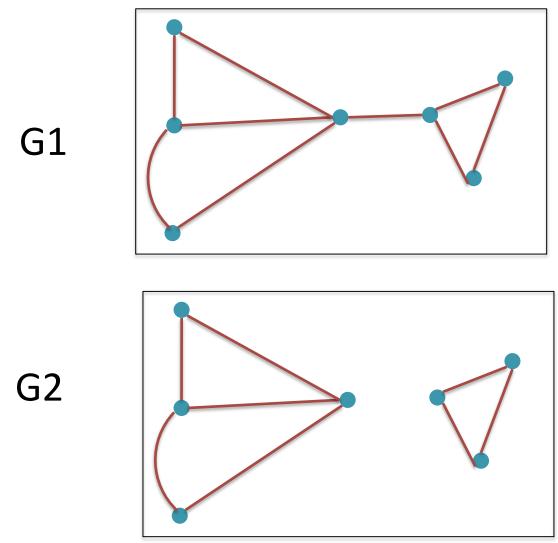


Complete digraph

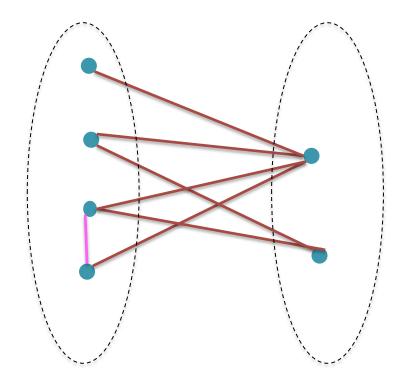
What is the largest number of arcs that a simple digraph with *N* nodes can have?



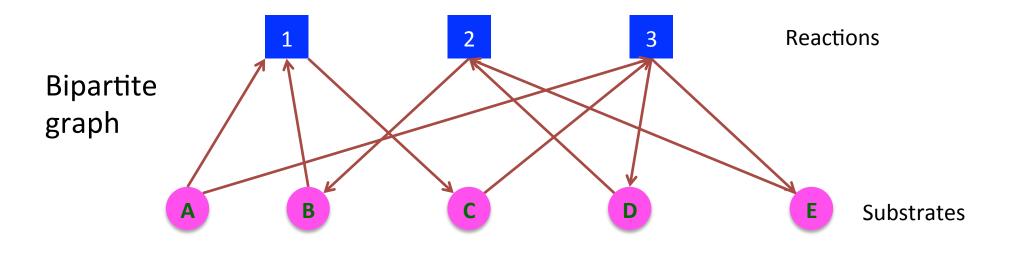
Connected and disconnected

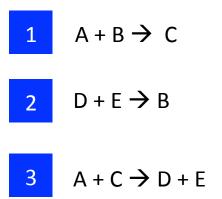


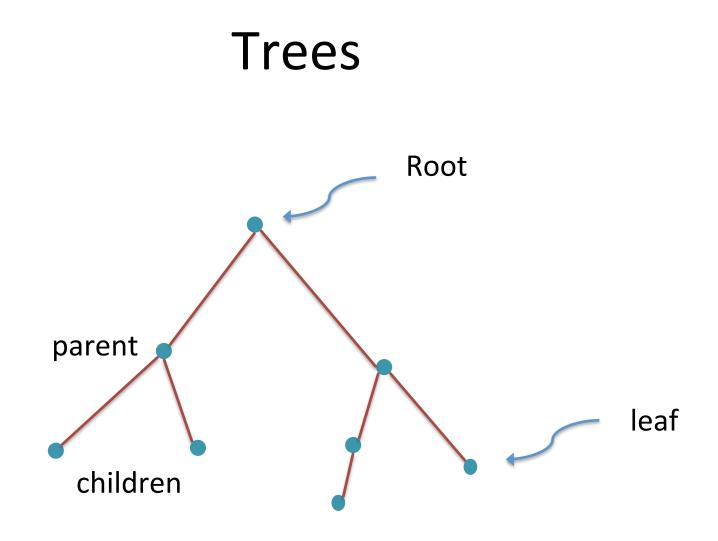
Bipartite graph



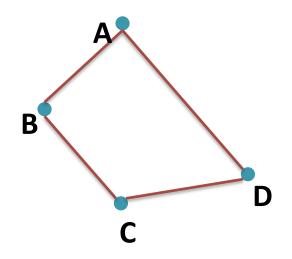
Metabolic interaction networks







Regular graph

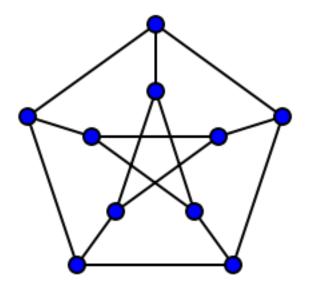


•A graph G is said to be regular, if every vertex of G has the same degree.

•If the degree is *r*, then *G* is *r*-regular.

Is the complete graph a regular graph?

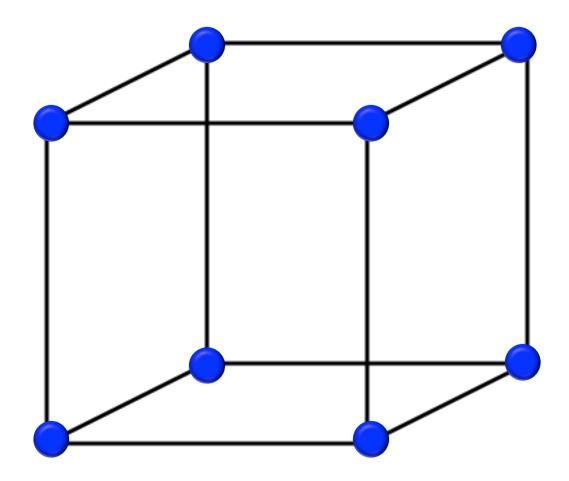
Regular graph: Petersen Graph

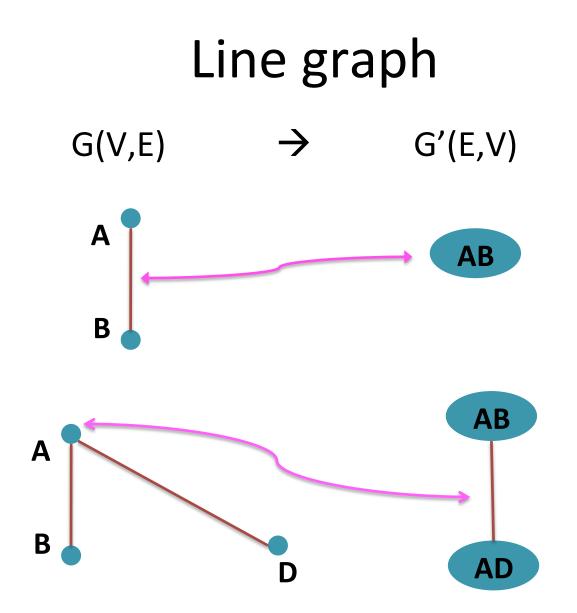


- Order = 10.
- Size = 15.
- 3-regular graph

Regular graph

Can you find a 3-regular graph whose order is 8?





Graph Theory

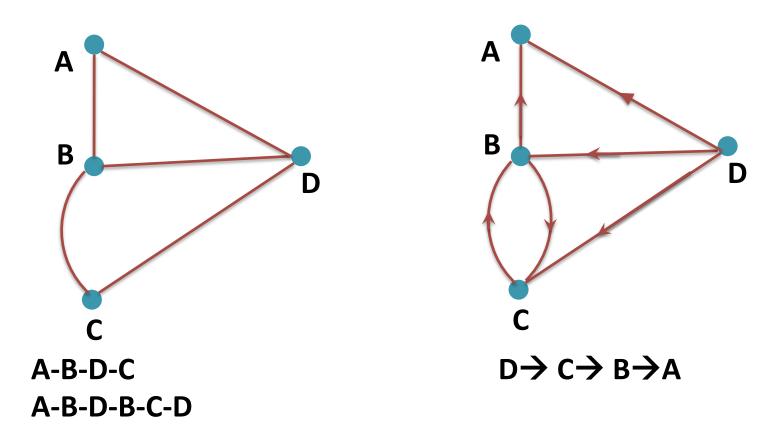
- Some basic concepts of Graph theory
- Some examples of Special graphs
- Graph paths and cycles
- Graph connectivity
- Tree and Bipartite graph
- Network motifs

Subgraphs again, special

- Walks
- Paths
- Circuits
- Cycles

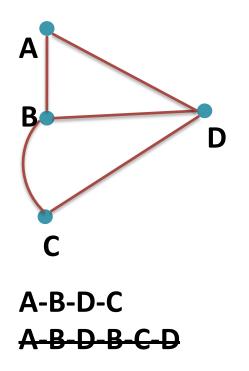
Walks

- Walk: a sequence of nodes in which each node is adjacent to the next one.
- In the digraph, a walk needs to follow the direction of edges.



Paths

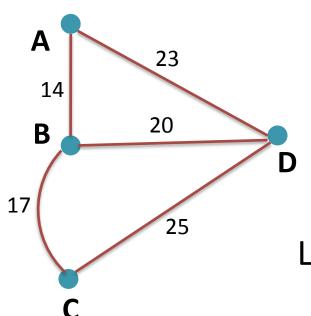
• Path: a sequence of nodes in which each node is adjacent to the next one, and edges can be part of a path only once.



A path having kvertices, is denoted by P_k . The length of this path is k-1.

Paths in Weighted graph

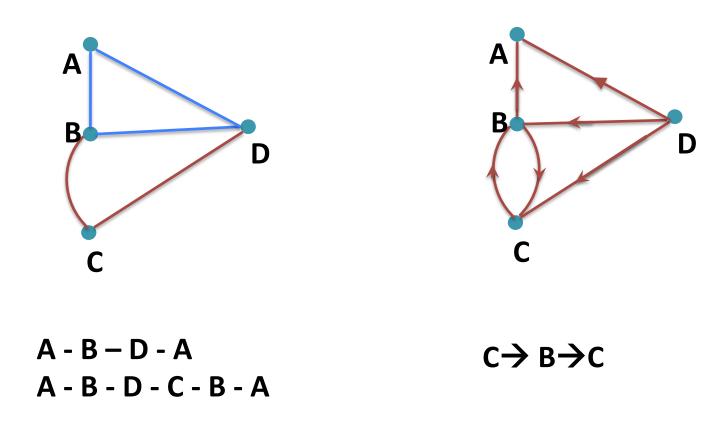
 The length of a path is the sum of all edge weights in the path.



Length of (A - B - C - D) = 14 + 17 + 25

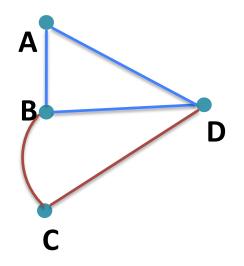
Circuits

• Circuit: a walk that starts and ends at the same vertex.



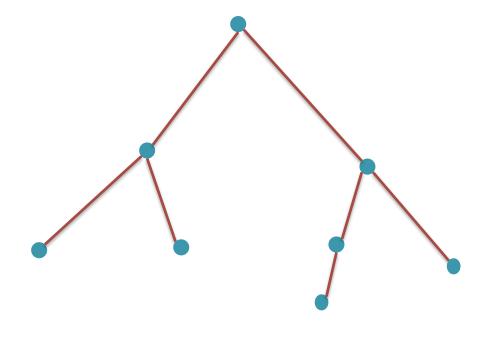
Cycles

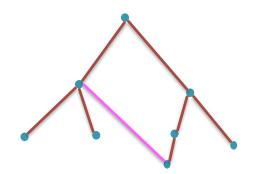
• Cycle: a circuit that does not revisit any nodes.



A cycle having kvertices, is denoted by C_k . The length of this cycle is also k.

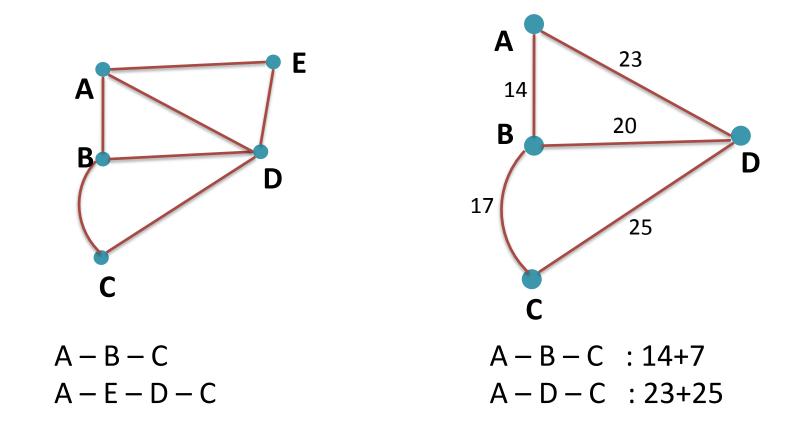
A tree does not have any cycle





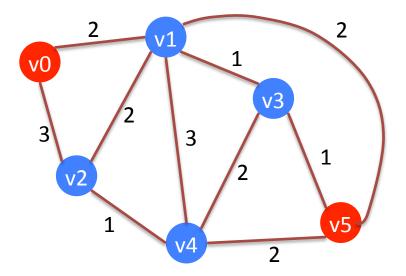
Shortest path

Between two nodes, there are multiple paths. The path having the shortest length is called the shortest path.



Distances between nodes

- The distance between two nodes is defined as the length of the shortest path.
- If the two nodes are disconnected, the distance is infinity.

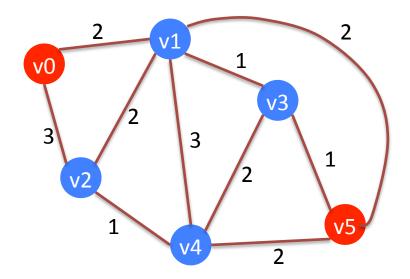


Distances between nodes

- In digraphs, path needs to follow the direction of the arrows.
- Thus in a digraph the distance from node A to B (on an AB path) is generally different from the distance from node B to A (on a BA path).

Diameter

- Graph diameter: the maximum distance between any pair of nodes in the graph.
- Note: not the longest path.



Average distance

 Average distance for a connected graph (component).

$$\langle l \rangle = \frac{1}{2N_{pairs}} \sum_{i,j \neq i} l_{ij}$$
, where l_{ij} is the distance from node *i* to node
 j , $N_{pairs} = {N \choose 2} = \frac{N(N-1)}{2}$ and N is the
number of nodes in the graph or component.

Since in a (symmetrical) graph $I_{ij} = I_{ji}$, we only need to count them

once
$$\langle l \rangle \equiv \frac{1}{N_{pairs}} \sum_{i,j>i} l_{ij}$$

Betweenness centrality (load)

- For all node pairs (*i*, *j*):
 - Find all the shortest paths between nodes *i* and *j* C(*i*,*j*)
 - Determine how many of these pass through node
 k C_k(*i*,*j*)
- The betweenness centrality of node k is

$$\boldsymbol{g}_{k} = \sum_{i \neq j} \frac{\boldsymbol{C}_{k}(i, j)}{\boldsymbol{C}(i, j)}$$

Graph efficiency

 To avoid infinity distance in graphs that are not connected and digraphs that are not strongly connected, one can define a graph efficiency (= average inverse distance)

$$\langle \boldsymbol{l} \rangle = \frac{1}{2N_{\text{paris}}} \sum_{i,j \neq i} \frac{1}{\boldsymbol{l}_{ij}}$$

N_pairs is the number of node pairs

A graph has a small average distance, it has a large graph efficiency.