
Graph	Theory	

Lecture	1	

NGS	

DNA-seq	 ChIP-seq	 RNA-seq	 Microarray	

Transcriptome	
•  Mul@ple	Test	
•  Visualiza@on	
•  Clustering		
•  Func@on	annota@on	
•  Enrichment	test	

Graph
theory

Protein	
interac@on	
networks	

Gene	
regulatory	
networks	

Data	Integra@on	

Roadmap

Many	complicate	systems	have	an	
underlying	network	topology	

•  Computer	networks	
•  Social		networks	
•  Biological	networks	

– Food	webs	(chains)	
– Gene	networks	
– Protein	interac@on	networks	
– Signal	transduc@on	networks	

Computer	networks	

Why	study	networks?		

•  It	is	increasingly	recognized	that	complex	
systems	cannot	be	described	in	a	reduc@onist	
view.		

•  Understanding	the	behavior	of	such	systems	
starts	with	understanding	the	topology	of		the	
corresponding	network.		

•  Topological	informa@on	is	fundamental	in	
construc@ng	realis@c	models	for	the	func@on	
of	the	network.		

Network	related	ques@ons	

•  How	do	we	determine	or	infer	network	
topology	?	How	do	we	build	a	network?	

•  How	can	we	quan@ta@vely	describe	large	
networks?		

•  How	did	networks	get	to	be	the	way	they	are?		
•  What	are	the	consequences	of	a	specific	
network	organiza@on?	

Graph	Theory	

•  Some	basic	concepts	of	Graph	theory	
•  Some	examples	of	Special	graphs	
•  Graph	paths	and	cycles	
•  Graph	connec@vity	
•  Tree	and	Bipar@te	graph	
•  Network	models	

Graph	concepts	

•  Graphs	are	made	up	by	ver@ces	
(nodes)	and	edges	(links).		

•  An	edge	connects	two	ver@ces,	
or	a	vertex	with	itself.		

G=(V,E)	
V:	a	finite	set	of	ver@ces.	
E:	edges	of	the	graph	

A	

B	

C	

D	

Graph	concepts:	some	terms	
•  Order	of	graph	G:	the	
number	of	all	ver@ces,		

										vG=|V|	
•  Size	of	graph:	the	number	of	
all	edges,	

											eG=|E|					
•  For	an	edge	e=uv,	the	
ver@ces	u	and	v	are	the	Ends	
of	this	edge;	u	and	v	are	
neighbors.	

A	

B	

C	

D	

G(V,E)	

Graph	concepts	
•  Edges	between	B	and	C-
mul@ple	edges		

•  AA	–		loop	
•  The	shape	of	the	graph	
does	not	ma\er;	only	the	
way	the	nodes	are	
connected	to	each	other.			

A	

B	

C	

D	

Simple	graph	

•  A	simple	graph	does	not	have	loops	(self	
edges)	and	mul@ple		iden@cal	edges.		

A	

B	

C	

D	

A	

B	

C	

D	

Weighted	graph	

A	

B	

C	

D	

23	

20	

25	
17	

14	

•  A	edge		has	a	weight	
value.	

•  In	some	applica@ons,	the	
weights,	e.g.,	correspond	
to	travel	costs	or	
geographical	distances.		

Directed	Graph	(Digraph)	

•  Edges		have	direc@ons,	
where	the	edges	are	
drawn	as	arrows.	

•  The	edges	in	the	digraph	
are	also	called	“arcs”.	

•  A	digraph	can	contain	
edges	BC	and	CB	of	
opposite	direc@ons.		

A	

B	

C	

D	

Ques@on:	Is	this	a	simple	graph?	

Opposite	of	a	Digraph	

A	

B	

C	

D	

G(E,V)	

A	

B	

C	

D	

Gop(E,V)	

All	ver@ces	are	same,	but	the	arrows	reversed.	

Weighted	Digraph			

•  Edges		have	both	weights	
and	direc@ons.	

•  		
A	

B	

C	

D	

23	

20	

25	
17	

14	

17	

Representa@ons	of	a	graph	
•  Plane	figures.		
•  List	of	edges.	
•  Adjacency	matrix.	

A	

B	

C	

D	

Representa@ons:	List	of	edges		

A	–	B	
A	–	D	
B	–	C	
B	–	D	
C	–	D	
	

A	

B	

C	

D	

Representa@ons:	adjacency	matrix	

A	

B	

C	

D	

A	 B		 C	 D	

A	 1	 1	

B	 1	 1	 1	

C	 1	 1	

D	 1	 1	 1	

(1)	Symmetric	matrix.	
(2)	What	does	it	mean	if	there	is	a	number	for	a	diagonal	entry?	

Representa@ons:	adjacency	matrix	for	
a	digraph	

A	 B		 C	 D	

A	 A->D	
1	

B	 B->A	
1	

B->C	
1	

C	 C->B	
1	

D	 D->B	
1	

D->C	
1	

A	

B	

C	

D	

This	matrix	is	not	necessary	to	be	symmetric.	

Node	degrees		
•  Neighborhood:	all	neighbors	
of	a	node.	

•  Degree:	the	number	of	edges	
connected	to	the	nodes;	the	
number	of	neighbors	of	a	
node	(vertex).	

•  Maximum	degree	and	
minimum	degree.	In	a	graph,	
the	largest	degree	and	the	
smallest	degree.	

A	

B	

C	

D	

Degrees	in	the	adjacency	matrix	

A	

B	

C	

D	

A	 B		 C	 D	

A	 1	 1	

B	 1	 1	 1	

C	 1	 1	

D	 1	 1	 1	

2	 3	 2	 3	Degrees:	

Subgraph	

•  If	H	is	a	subgraph	of	G,	V(H)					V(G)	and		
				E(H)						E(G).		

A	

B	

C	

D	

€

⊆

€

⊆

A	

B	
D	

G(V,E)	
H(V,E)	

Spanning	Subgraph	
•  If	H	is	a	spanning	subgraph	of	G,	
V(H)=V(G)	and	E(H)						E(G).		

A	

B	

C	

D	

€

⊆

G(V,E)	
H(V,E)	

A	

B	

C	

D	

Special	graphs	

•  Trivial	graph	
•  Complete	graph		
•  Connected	and	disconnected	graph	
•  Trees	
•  Bipar@te	graph	
•  Regular	graph	
•  Line	graph	

Trivial	graph	

A

Complete	graph	(clique)	
A

B

C
D

EA

B

C
D

A

B

C

€

E = 2
n() =

n(n −1)
2

K3	 K4	 K5	
What	the	total	number	of	edges	in	a	complete	graph?	

Connec@on	Density	

2/)1(sConnection possible of # Max.
sConnection of#

−
==

VV
EQ

A

B

C
D

E
A

B

C
D

E

Q=1	 Q=8/10	

Complete	digraph	
What	is	the	largest	number	of	arcs	that	a	simple	digraph	
with	N	nodes	can	have?	

€

E = 2 × 2
n() = 2 × n(n −1)

2

A

B

C

A

B

C

Connected	and	disconnected			

G1	

G2	

Bipar@te	graph	

Metabolic	interac@on	networks	
1	 2	 3	

A	 B	 E	D	C	

Reac@ons	

Substrates	

Bipar@te	
graph	

1	 A	+	B	à		C	

2	 D	+	E	à	B	

3	 A	+	C	à	D	+	E	

Trees	

Root	

leaf	

parent	

children	

Regular	graph	

Is	the	complete	graph	a	regular	graph?	

A

B

C
D

• A	graph	G	is	said	to	be	regular,	if	
every	vertex	of	G	has	the	same	
degree.		
• If	the	degree	is	r,	then	G	is	r-regular.	

Regular	graph:	Petersen	Graph	

• 	Order	=	10.		
• 	Size	=	15.	
• 	3-regular	graph	

Regular	graph	

Can	you	find	a	3-regular	graph	whose	order	is	8?	

Line	graph	
G(V,E)													à												G’(E,V)	

A	

B	
D	

A	

B	

AB	

AB	

AD	

Graph	Theory	

•  Some	basic	concepts	of	Graph	theory	
•  Some	examples	of	Special	graphs	
•  Graph	paths	and	cycles	
•  Graph	connec@vity	
•  Tree	and	Bipar@te	graph	
•  Network	mo@fs	

Subgraphs	again,	special	

•  Walks	
•  Paths	
•  Circuits	
•  Cycles	

Walks	
•  Walk:	a	sequence	of	nodes	in	which	each	node	is	
adjacent	to	the	next	one.		

•  In	the	digraph,	a	walk	needs	to	follow	the	direc@on	of	
edges.	

A	

B	

C	

D	

A	

B	

C	

D	

A-B-D-C	
A-B-D-B-C-D	

Dà	Cà	BàA	

Paths		
•  Path:	a	sequence	of	nodes	in	which	each	node	
is	adjacent	to	the	next	one,	and	edges	can	be	
part	of	a	path	only	once.		

A

B

C

D

A-B-D-C	
A-B-D-B-C-D	

A	path	having	k	
ver@ces,	is	denoted	
by	Pk	.	The	length	of	
this	path	is		k-1.	

Paths	in	Weighted	graph	

A	

B	

C	

D	

23	

20	

25	
17	

14	

•  The	length	of	a	path	is	the	
sum	of	all	edge	weights	in	
the	path.	

Length	of	(A	–B–C	–D)		=		14+17+25	

Circuits	

•  Circuit:	a	walk	that	starts	and	ends	at	the	
same	vertex.		

A

B

C

D

A

B

C

D

Cà	BàC	A	-	B	–	D	-	A	
A	-	B	-	D	-	C	-	B	-	A			

Cycles	

•  Cycle:	a	circuit	that	does	not	revisit	any	nodes.		

A

B

C

D

A	-	B	–	D	-	A	
A	-	B	-	D	-	C	-	B	-	A			

A	cycle	having	k	
ver@ces,	is	denoted	
by	Ck	.	The	length	of	
this	cycle	is	also	k.	

A	tree	does	not	have	any	cycle	

Shortest	path	

A

B

C

D

E
A	

B	

C	

D	

23	

20	

25	
17	

14	

A	–	B	–	C		
A	–	E	–	D	–	C		

Between	two	nodes,	there	are	mul@ple	paths.	The	path	
having	the	shortest	length	is	called	the	shortest	path.		

A	–	B	–	C			:	14+7	
A	–	D	–	C			:	23+25		

Distances	between	nodes		

•  The	distance	between	two	nodes	is	defined	
as	the	length	of	the	shortest	path.		

•  If	the	two	nodes	are	disconnected,	the	
distance	is	infinity.		

v0	
v1	

v2	

v3	

v4	
v5	

2	 2	

2	

2	

2	

1	

1	

3	

1	

3	

Distances	between	nodes		

•  In	digraphs,	path	needs	to	follow	the	
direc@on	of	the	arrows.		

•  Thus	in	a	digraph	the	distance	from	node	
A	to	B	(on	an	AB	path)	is	generally	
different	from	the	distance	from	node	B	to	
A	(on	a	BA	path).	

Diameter	

•  Graph	diameter:	the	maximum	distance	
between	any	pair	of	nodes	in	the	graph.		

•  Note:	not	the	longest	path.		

v0	
v1	

v2	

v3	

v4	
v5	

2	 2	

2	

2	

2	

1	

1	

3	

1	

3	

Average	distance	

•  Average	distance	for	a	connected	graph	
(component).		

Betweenness	centrality	(load)	

•  For	all	node	pairs	(i,	j):		
– Find	all	the	shortest	paths	between	nodes	i	and	j	-
C(i,j)		

– Determine	how	many	of	these	pass	through	node	
k			-	Ck(i,j)		

•  The	betweenness	centrality	of	node	k	is		

Graph	efficiency		

•  To	avoid	infinity	distance	in	graphs	that	are	
not	connected	and	digraphs	that	are	not	
strongly	connected,	one	can	define	a	graph	
efficiency	(=	average	inverse	distance)		

N_pairs	is	the	number	of	node	pairs		

€

l =
1

2Nparis
1
liji, j≠ i

∑

A	graph	has	a	small	average	distance,	it	has	a	
large	graph	efficiency.	

