
Data	Integra*on	
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Metastructures: systems approach to determine 
genome annotation.  

Qiu Y et al. Genome Res. 2010;20:1304-1311 



Why	do	we	need	to	integrate	various	
types	of	omic	data?	

•  Get	a	consensus	results	(reduce	false	posi*ve	
rate)	

•  Focusing	on	one	type	of	data	may	miss	an	
obvious	signal		
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Experimental	PlaPorms		
Non-omics	and	Omics,	what	are	they?	



Integra*on	of	omics	data	sets	
Pairwise)integra?on)of)omics)data)

sets
Genomics Transcriptomics Proteomics Metabolomics Protein–DNA

interactions
Protein–protein
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Fluxomics Phenomics
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Nature&Reviews&Molecular&Cell&Biology,)7:198–210,)2006.



Mul*-omic	data	integra*on	
Mul?@omic)data)integra?on)against)

the)sequence)template
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Gene Annotation Improvement

Transcript Characterization
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Comparison with NCBI
NCBI Total # of Genes 1858
Shared Genes 1830
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66 (3.5)
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     <30 bp Change 252
     ≥30 bp Change 117

67
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CRISPRs 8
Others 10

Protein Coding Genes
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Genes per TU (average) 3.27
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Genome Reannotation
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UTRs Rho-independent Terminators

Integration

Genetic Element Identification

From)Haythem)La?fH.	La*f	et	al.	PLoS	Gene*cs	2013	



Challenges	

1.  Data	Pre-processing	
2.  High	Dimensionality	
3.  Mul*ple	Tes*ng	for	Marker	Selec*on	
4.  Data	Integra*on	
5.  Valida*on	of	the	Predic*on	Model	



•  Peak	Alignment	for	different	
plaPorms			

•  Normaliza*on	among	various	
types	of	data	
–  Why?	Remove	systema*c	
bias	in	the	data	

–  Normaliza*on	within	the	
plaPorm	makes	data	
comparable	across	samples	

Challenge	#1:	Data	Pre-processing			



Challenge	#	2:	High	Dimensionality	
#	of	subjects	<<	#	of	variables	

•  Genes	variants:		5000	peaks	
•  Gene	Expression	(RNA-seq):		22,000	probe	sets			
•  Protein-DNA	interac*ons	(ChIP-seq):	2,	000	peaks	
•  Protein	interac*ons:	100,000,000			

Animal 1 
Animal 2 
       . 
       . 
       . 
       . 
 
Animal 100 

probe set 1 …… 22,000 Lipid 1 ...… 2,000 Metabolite 1  … 3,000 NMR 1 …… 500 Choles, Trig,… ... 



Pla$orm	A 
20000s	var.	 

Pla$orm	B 
1000s	var.	 

Combined 
Data 

Pla$orm	A 
20000s	var. 

Pla$orm	B 
1000s	var.	 

		Dimension	Reduc<on 
( eg 	variable	selec<on) 

Pla$orm	A 
1000s	var.	 

Pla$orm	B 
100s	var.	 

Combined 
Data 

Integra<on	Approach	1: Integra<on	Approach	2: 

Challenge	#4:	Data	integra*on		(How?)	



Example	1	

Iden*fica*on	and	
quan*ta*ve	
comparison	of	gene*c	
elements	for	
transcrip*on	and	
transla*on	ini*a*on.	

H.	La*f	et	al.	PLoS	Gene*cs	2013	



Example	2	

B.	Cho	et	al.	BMC	Biology	2014	

σ-factor	network	in	E.	coli.	



Integra<ve	Modeling	Defines	the	Nova	
Splicing-Regulatory	Network	and	Its	

Combinatorial	Controls		
	

Chaolin	Zhang		et	al.	Science	2010	

Example	3	



Data	Integra*on	

•  More	and	more	diverse	"omics”	data	exist	
•  “It	is	essen*al	to	integrate	various	kinds	of	
biological	informa*on	and	large-scale	omics	data	
sets	through	systema*c	analysis”	with	
sta*s*cally	rigorous	and	physically	sound	models	

•  Bayesian	Network		
•  CLIP-seq	(sequencing)	+	TF	binding	site	
(bioinforma*cs)	+	expression	profile	(microarry)	
+evolu*onary	signature.	



Bayesian	Network	
•  A	probabilis*c	graphical	model	that	represents	a	
set	of	random	variables	and	their	condi*onal	
dependencies	via	a	directed	acyclic	graph.	

•  used	to	represent	causal	rela*onships.	

Applica*ons:	
1.  Inferring	unobserved	

variables	
2.  Parameter	learning		



Nova-regulated	Alterna*ve	Splicing		
•  Nova	proteins	are	a	family	of	neuron-specific	alterna*ve	splicing	

factors.								(Ule	et	al.	Nature	2006)	
•  The	Nova	protein	binds	to	pre-message	RNA	at	a	binding	site	of	

“YCAY”	clusters.	
•  Nova	binding	to	an	exonic	YCAY	cluster	changed	the	protein	

complexes	assembled	on	pre-mRNA,	blocking	U1	snRNP	binding	
and	exon	inclusion.	

•  Nova	binding	to	an	intronic	YCAY	cluster	enhanced	spliceosome	
assembly	and	exon	inclusion.		
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Exon	exclusion	Exon	inclusion	



Data	sources	

•  HITS-CLIP		(CLIP-seq).	Study	Protein-RNA	binding	
by	crosslinking	between	RNA	and	the	protein,	
followed	by	immunoprecipita*on	and	high-
throughput	sequencing.	

•  Genome-wide	searching	of	YCAY	mo<f.	
Bioinforma*cs	approach.	

•  Microarray	data	compared	WT	and	Nova	
knockout.		

•  Evolu<on	signature.	Conserved	Alterna*ng	
Splicing	between	human	and	rats.	
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HITS-CLIP	

Microarray		
Expression	Profile	

Evolu*on	Signatures	

E:	Exon	
U:	Upstream	of	Intron	
D:	Downstream	of	Intron	



Es*mated	Condi*onal	prob.	

With	inferred	Nova	binding	

Without	inferred	Nova	binding	
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Regula*on	of	Nova	binding	posi*on	

E:	Exon	
U:	Upstream	of	Intron	
D:	Downstream	of	Intron	
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Splicing	changes	

WT	 KO	

WT	 KO	
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Predicted	Nova-regulated	targets	

•  13,357	annotated	
casseme	exons	



Novel	Nova-regulated	targets	

•  Besides	AS	from	
database,	searched	
novel	exons	with	
high	sequence	
conserva*ons.	

•  Addi*onal	76	novel	
exons	as	Nova	
targets		



Predic*on	Performance	



Reduced	Bayesian	Network	

•  Clip	Data	Only	 •  Mo*f		Data	Only	



Experimental	Valida*on	

Exon	Inclusion	

Exon	Exclusion	



Two	more	Casset	Exon	Cases	

Exon	Inclusion	

Exon	Exclusion	



Other	examples	

Exon	Inclusion	

Exon	Exclusion	

TACA	

MUTX	



Conserva*on	regions	

Intron	Downstream	3’		

Intron	Downstream	5’		

Intron	Downstream	5’	and	3’		

Exon	

Intron	upnstream	5’	

Intron	upnstream	5’	and	3’	

Intron	upnstream	3’	



Func*ons	of	Nova	targets		
• 		Nova	regulates	alterna*ve	splicing	of	
transcripts	encoding	synap*c	proteins.	
• 		Go-term	analysis	and	KEGG	metabolic	pathway	
analysis	confirmed	this.	
• 		It	is	unclear	how	Nova-regulated	AS	might	
effect	the	interac*ons	between	those	synap*c	
proteins.	
• 	Protein	annota*ons	revealed	that	about	half	
Nova	target	transcripts	encoded	
phosphoproteins.	



GO-term	enrichment	of	Nova	targets		



Pathway	enrichment	of	Nova	targets		



Nova	targets	-	phosphoproteins			



Applica*ons	of	Bayesian	Network	

Can	we	apply	Bayesian	Network	into	our	
research?	
	
• 	Next	genera*on	sequencing	data,	such	as	
RNA-seq,	Chip-seq	etc.	
• 	Microarray	data	
• 	Mo*f	data,	for	example,	TF	binding	sites,	
miRNA	sequences	etc.	
• 	Genome	sequence	data,	Ath,	Maize,	Rice,	
Soybean	etc.	



Summary	
•  Recent technological advances present 

challenging and interesting biological data at 
molecular level. 

•  Statistics and multivariate analysis play an 
important role in understanding and extracting 
knowledge from these type of data. 

•  Integrative analysis is even more challenging 
and we presented some solutions to these 
challenges. There is plenty of room for 
improvement.	


