Data Integration

Metastructures: systems approach to determine genome annotation.

Qiu Y et al. Genome Res. 2010;20:1304-1311

Why do we need to integrate various types of omic data?

- Get a consensus results (reduce false positive rate)
- Focusing on one type of data may miss an obvious signal

Integration of omics data sets

Genomics	Transcriptomics	Proteomics	Metabolomics	Protein–DNA interactions	Protein-protein interactions	Fluxomics	Phenomics
Genomics (sequence annotation)	 ORF validation Regulatory element identification⁷⁴ 	• SNP effect on protein activity or abundance	• Enzyme annotation	• Binding-site identification ⁷⁵	• Functional annotation ⁷⁹	• Functional annotation	 Functional annotation^{71,103} Biomarkers¹²⁵
	Transcriptomics (microarray, SAGE)	• Protein: transcript correlation ²⁰	• Enzyme annotation ¹⁰⁹	• Gene-regulatory networks ⁷⁶	 Functional annotation⁸⁹ Protein complex identification⁸² 		• Functional annotation ¹⁰²
		Proteomics (abundance, post- translational	• Enzyme annotation ⁹⁹	• Regulatory complex identification	• Differential complex formation	• Enzyme capacity	• Functional annotation
		modification)	Metabolomics (metabolite abundance)	• Metabolic- transcriptional response		 Metabolic pathway bottlenecks 	 Metabolic flexibility Metabolic engineering¹⁰⁹
				Protein–DNA interactions (ChlP–chip)	• Signalling cascades ^{89,102}		• Dynamic network responses ⁸⁴
					Protein–protein interactions (yeast 2H,		 Pathway identification activity⁸⁹
					COAP-MS)	Fluxomics (isotopic tracing)	 Metabolic engineering
							Phenomics (phenotype arrays, RNAi screens, synthetic lethals)

Nature Reviews Molecular Cell Biology, 7:198–210, 2006.

Multi-omic data integration

H. Latif et al. PLoS Genetics 2013

Challenges

- 1. Data Pre-processing
- 2. High Dimensionality
- 3. Multiple Testing for Marker Selection
- 4. Data Integration
- 5. Validation of the Prediction Model

Challenge #1: Data Pre-processing

 Peak Alignment for different platforms

- Normalization among various types of data
 - Why? Remove systematic bias in the data
 - Normalization within the platform makes data comparable across samples

Challenge # 2: High Dimensionality

of subjects << # of variables</pre>

- Genes variants: 5000 peaks
- Gene Expression (RNA-seq): 22,000 probe sets
- Protein-DNA interactions (ChIP-seq): 2, 000 peaks
- Protein interactions: 100,000,000

Challenge #4: Data integration (How?)

Identification and quantitative comparison of genetic elements for transcription and translation initiation.

H. Latif et al. PLoS Genetics 2013

Example 2

σ -factor network in E. coli.

hypB

hypC

hyp

B. Cho et al. BMC Biology 2014

Example 3

Integrative Modeling Defines the Nova Splicing-Regulatory Network and Its Combinatorial Controls

Chaolin Zhang et al. Science 2010

Data Integration

- More and more diverse "omics" data exist
- "It is essential to integrate various kinds of biological information and large-scale omics data sets through systematic analysis" with statistically rigorous and physically sound models
- Bayesian Network
- CLIP-seq (sequencing) + TF binding site (bioinformatics) + expression profile (microarry) +evolutionary signature.

Bayesian Network

- A probabilistic graphical model that represents a set of random variables and their conditional dependencies via a directed acyclic graph.
- used to represent causal relationships.

Nova-regulated Alternative Splicing

- Nova proteins are a family of neuron-specific alternative splicing factors. (Ule *et al. Nature* 2006)
- The Nova protein binds to pre-message RNA at a binding site of "YCAY" clusters.
- Nova binding to an exonic YCAY cluster changed the protein complexes assembled on pre-mRNA, blocking U1 snRNP binding and exon inclusion.
- Nova binding to an intronic YCAY cluster enhanced spliceosome assembly and exon inclusion.

Data sources

- **HITS-CLIP** (CLIP-seq). Study Protein-RNA binding by crosslinking between RNA and the protein, followed by immunoprecipitation and high-throughput sequencing.
- Genome-wide searching of YCAY motif. Bioinformatics approach.
- Microarray data compared WT and Nova knockout.
- Evolution signature. Conserved Alternating Splicing between human and rats.

Estimated Conditional prob.

Predicted miRNA binding site

Bayesian Model

Regulation of Nova binding position

Bayesian Model

Splicing changes

Bayesian Model

Predicted Nova-regulated targets

 13,357 annotated cassette exons

Novel Nova-regulated targets

- Besides AS from database, searched novel exons with high sequence conservations.
- Additional 76 novel exons as Nova targets

Prediction Performance

Reduced Bayesian Network

в

• Clip Data Only

Experimental Validation

Exon Inclusion

Two more Casset Exon Cases

Exon Exclusion

Other examples

TACA Exon Inclusion

Conservation regions

Functions of Nova targets

- Nova regulates alternative splicing of transcripts encoding synaptic proteins.
- Go-term analysis and KEGG metabolic pathway analysis confirmed this.
- It is unclear how Nova-regulated AS might effect the interactions between those synaptic proteins.
- Protein annotations revealed that about half
 Nova target transcripts encoded
 phosphoproteins.

GO-term enrichment of Nova targets

GO Term	Gene	%	P-Value	Fold Enrichment	Benjamini FDR
Biological process					
GO:0016043~cellular component organization	93	26.05	4.02E-12	2.02	6.93E-09
GO:0007399~nervous system development	53	14.85	1.01E-09	2.48	8.72E-07
GO:0032989~cellular component morphogenesis	31	8.68	2.32E-09	3.56	1.33E-06
GO:0030030~cell projection organization	30	8.40	3.55E-09	3.60	1.53E-06
GO:0007268~synaptic transmission GO:0048667~cell morphogenesis involved in	22	6.16	8.39E-09	4.64	2.90E-06
neuron differentiation	22	6.16	1.18E-08	4.55	3.40E-06
GO:0051179-localization	104	29.13	1.63E-08	1.66	4.03E-06
GO:0000902~cell morphogenesis	28	7.84	1.64E-08	3.57	3.53E-06
GO:0019226~transmission of nerve impulse	24	6.72	2.47E-08	4.01	4.73E-06
GO:0007154~cell communication	34	9.52	4.41E-08	2.93	7.60E-06
Cellular component					
GO:0045202~synapse	38	10.64	1.64E-15	4.85	5.00E-13
GO:0044459~plasma membrane part	82	22.97	2.06E-15	2.51	3.16E-13
GO:0042995~cell projection	47	13.17	3.24E-14	3.62	3.24E-12
GO:0030054~cell junction	42	11.76	3.53E-14	4.00	2.65E-12
GO:0005856~cytoskeleton	61	17.09	6.36E-12	2.60	3.81E-10
GO:0005886~plasma membrane	104	29.13	6.82E-11	1.84	3.41E-09
GO:0042734~presynaptic membrane	11	3.08	1.07E-09	14.80	4.61E-08
GO:0016323~basolateral plasma membrane	19	5.32	3.11E-09	5.83	1.17E-07
GO:0044456~synapse part	23	6.44	5.65E-09	4.55	1.88E-07
GO:0043005~neuron projection	25	7.00	8.93E-09	4.09	2.68E-07
Molecular function					
GO:0005515~protein binding	198	55.46	9.43E-15	1.49	4.50E-12
GO:0008092~cytoskeletal protein binding	35	9.80	2.57E-10	3.51	6.14E-08
GO:0003779~actin binding	23	6.44	9.83E-07	3.40	1.56E-04
GO:0030695~GTPase regulator activity GO:0060589~nucleoside-triphosphatase regulator	26	7.28	1.17E-06	3.06	1.39E-04
activity	26	7.28	1.61E-06	3.01	1.54E-04

Pathway enrichment of Nova targets

KEGG pa	thway	Gene count	Fold Enrichment	Benjamini FDR	Genes
mmu0402 Calcium s	0 ignaling pathway	17	3.5	0.001	Atp2b1, Atp2b2, Cacna1c, Cacna1d, Cacna1b, Cacna1g, Camk2a, Camk2g, Camk2b, Grin1, Gnas, Picb4, Ppp3cb, Ppp3cc, Ryr2, Sic8a1, Erbb4
mmu0472 Long-term	0 potentiation	10	5.3	0.003	Cacna1c, Camk2a, Camk2g, Camk2b, Gria2, Grin1, Plcb4, Ppp1r12a, Ppp3cb, Ppp3cc
mmu0451 Cell adhe:	4 sion molecules	12	4.1	0.003	Alcam, Cadm1, Cadm3, Mpzl1, Neo1, Nrxn3, Nfasc, Nfasc, Ptprf, Ptprm, Nign1, Nrcam,Nrxn1
(CAMS) mmu0452 Adherens	0 junction	10	4.4	0.006	Actn4, Baiap2, Ctnna2, Ctnnd1, Pard3, Smad2, Smad4, Ptprf, Ptprm,Sorbs1
mmu0436 Axon guid	0 ance	13	3.3	0.006	Ablim1, Cxcl12, Dcc, Epha5, Efna5, Ablim2, Ntng1, Pak3, Ppp3cb, Ppp3cc, Arhgef12, Robo2, Unc5c
mmu0491 GnRH sig	2 naling pathway	10	3.6	0.017	Cacna1c, Cacna1d, Camk2a, Camk2g, Camk2b, Gnas, Mapk8, Mapk9, Map2k4, Picb4
mmu0431 Wnt signa	0 ling pathway	12	2.8	0.032	Apc, Camk2a, Camk2g, Camk2b, Smad2, Smad4, Mapk8, Mapk9, Plcb4, Porcn, Ppp3cb, Ppp3cc
mmu0493 Type II dia	0 abetes mellitus	6	5.2	0.048	Cacna1c, Cacna1d, Cacna1b, Cacna1g, Mapk8, Mapk9
mmu0426 Cardiac m	0 ouscle contraction	7	4.2	0.049	Tpm2, Cacna1d, Cacna1c, Tpm1, Ryr2, Slc8a1, Tpm3
mmu0401 ErbB sign	2 aling pathway	8	3.3	0.074	Camk2a, Camk2g, Camk2b, Mapk8, Mapk9, Map2k4, Pak3, Erbb4
mmu0453 Tight junc	0 tion	9	2.7	0.01	Actn4, Cask, Ctnna2, Pard3, Epb4.1, Epb4.111, Epb4.112, Epb4.113, Magi1

Nova targets - phosphoproteins

Applications of Bayesian Network

Can we apply Bayesian Network into our research?

- Next generation sequencing data, such as RNA-seq, Chip-seq etc.
- Microarray data
- Motif data, for example, TF binding sites, miRNA sequences etc.
- Genome sequence data, Ath, Maize, Rice, Soybean etc.

Summary

- Recent technological advances present challenging and interesting biological data at molecular level.
- Statistics and multivariate analysis play an important role in understanding and extracting knowledge from these type of data.
- Integrative analysis is even more challenging and we presented some solutions to these challenges. There is plenty of room for improvement.