Transcriptome Lecture 3

Outline

- Multiple Testing Procedures
- Data Visualization, Distance Measures
- Clustering
- Gene Annotation and Enrichment Analysis

giggleBites

© 2009 cartoosh.com

The Visualization

- MA plot
- Volcano plot
- Heatmap
- Dendrogram

Heatmap

- A heat map is a graphical representation of data where the values taken by a variable in a two-dimensional map are represented as colors
- In Microarray/RNA-seq, it plots the level of expression of many genes (in y-axis) across a number of samples (in x-axis)

– The data is in the form of matrix

Heatmap

	S1	S2	S3
g1	10	5	2
g2	7	0	9
g3	6	8	10

Heatmap: Example

- ALL data (Lymphoblastic leukemia study):
 - 12625 probes (genes) rows
 - 128 samples columns

LLhm)]
ALL1/AF4 04006	E2A/PBX1 08018	ALL1/AF4 15004	ALL1/AF4 16004	ALL1/AF4 19005 AL	1
6.816397	7.151422	6.822427	6.709222	6.798443	
4.570669	7.019295	4.892009	4.889920	4.339371	
8.475419	6.880097	9.939768	9.140339	9.579710	\circ
8.631929	10.443100	8.487560	7.823037	9.879712	
7.854585	9.238699	7.559106	7.837794	7.864575	
8.039748	5.798014	6.791144	6.733774	7.276141	
	LLhm) ALL1/AF4 04006 6.816397 4.570669 8.475419 8.631929 7.854585 8.039748	LLhm) ALL1/AF4 04006 E2A/PBX1 08018 6.816397 7.151422 4.570669 7.019295 8.475419 6.880097 8.631929 10.443100 7.854585 9.238699 8.039748 5.798014	LLhm) ALL1/AF4 04006 E2A/PBX1 08018 ALL1/AF4 15004 6.816397 7.151422 6.822427 4.570669 7.019295 4.892009 8.475419 6.880097 9.939768 8.631929 10.443100 8.487560 7.854585 9.238699 7.559106 8.039748 5.798014 6.791144	LLhm) ALL1/AF4 04006 E2A/PBX1 08018 ALL1/AF4 15004 ALL1/AF4 16004 6.816397 7.151422 6.822427 6.709222 4.570669 7.019295 4.892009 4.889920 8.475419 6.880097 9.939768 9.140339 8.631929 10.443100 8.487560 7.823037 7.854585 9.238699 7.559106 7.837794 8.039748 5.798014 6.791144 6.733774	LLhm) ALL1/AF4 04006 E2A/PBX1 08018 ALL1/AF4 15004 ALL1/AF4 16004 ALL1/AF4 19005 AL 6.816397 7.151422 6.822427 6.709222 6.798443 4.570669 7.019295 4.892009 4.889920 4.339371 8.475419 6.880097 9.939768 9.140339 9.579710 8.631929 10.443100 8.487560 7.823037 9.879712 7.854585 9.238699 7.559106 7.837794 7.864575 8.039748 5.798014 6.791144 6.733774 7.276141

Heatmap: Example

- ALL data (Lymphoblastic leukemia study):
- source("http://www.bioconductor.org/ biocLite.R")
- biocLite("ALL")
- > library("ALL")
- > data(ALL)
- > p=exprs(ALL)[1:45,1:81]
- > heatmap(p)

The Visualization

- MA plot
- Volcano plot
- Heatmap
- Dendrogram

Dendrogram

- A **Dendrogram** is a tree diagram frequently used to illustrate the arrangement of the clusters produced by clustering.
- In Microarray/RNA-seq, it can represent the distance between a number of samples (or genes)

Dendrogram

 In Microarray/RNA-seq, a dendrogram can represent the distance between a number of samples (or genes)

Outline

- Multiple Testing Procedures
- Data Visualization, Distance Measures
- Clustering
- Gene Annotation and Enrichment Analysis

Clustering: what is it?

The goal of clustering could be to gather genes or samples into groups. We call those groups as clusters.

A *cluster* is a collection of objects which are "similar" between them and are "dissimilar" to the objects belonging to other clusters.

Clustering: why cluster genes?

- Identify groups of possibly co-regulated genes (e.g. genes regulated by one transcription factor).
- Identify typical temporal or spatial gene expression patterns (e.g. cell cycle data).
- Arrange a set of genes in a linear order that is at least not totally meaningless (for visualization).

Clustering: why cluster samples?

- Quality control: Detect experimental artifacts/ bad hybridizations
- Check whether samples are grouped according to known categories
- Identify new classes of biological samples (e.g. tumor subtypes)

- Issues to be consider before performing a cluster analysis
 - □Which genes/arrays to be used?
 - □Which distance (similarity) measures?
 - Which method is used to join clusters/ observations?
 - □Which clustering algorithm is applied?

- Issues to be consider before performing a cluster analysis
 - □ Which genes/arrays to be used?
 - It is advisable to reduce the number of genes from the full set to some more manageable number, before clustering.
 - A common approach is to perform a cluster analysis based on differentially expressed genes
 - □Which distance (similarity or dissimilarity) measures?
 - □ Which method is used to link clusters?
 - □ Which clustering algorithm is applied?

 Issues to be consider before performing a cluster analysis

□Which genes/arrays to be used?

Which distance (similarity or dissimilarity) measures?

- Correlation coefficient based distance (scaleindependent)
- Minkowski metric (scale-dependent)

Which method is used to link clusters?Which clustering algorithm is applied?

Distance: classes

- Distance between points
 - O Minkowski metric
 - Euclidean metric
 - Manhattan metric
 - **Correlation distance**
 - Pearson sample correlation distance
 - Cosine correlation distance
 - Spearman sample correlation distance

Minkowski distance

For two points $X = (x_1, \dots, x_m)$ and $Y = (y_1, \dots, y_m)$

• Minkowski distance

$$F(z_1, \dots, z_m) = \left(\sum_{k=1}^m z_k^\lambda\right)^{1/\lambda}$$
$$z_k = d_k(x_k, y_k) = |x_k - y_k|$$

- EUC Euclidean distance $\lambda = 2$

$$d_{euc}(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{m} (x_i - y_i)^2}.$$

– Man Manhattan distance $\lambda = 1$

$$d_{man}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{m} |x_i - y_i|.$$

Distance

- In most case, we care more about the overall shape of expression profiles rather than the actual magnitudes
- That is, we might want to consider genes similar when they are "up" and "down" together

Distance: correlations

Pearson correlation coefficient

$$r(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i=1}^{m} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{m} (x_i - \overline{x})^2 \sum_{i=1}^{m} (y_i - \overline{y})^2}}$$

 $r(x,y) \in [-1,1]$

Pearson's correlation reflects the degree of linear relationship between X and Y.

- 1 perfect similarity(positive linear)
 - 0 no similarity
- -1 perfect dissimilarity(negative linear)

Distance: correlations

• Pearson sample correlation distance

$$d_{cor}(\mathbf{x}, \mathbf{y}) = 1 - r(\mathbf{x}, \mathbf{y}) = 1 - \frac{\sum_{i=1}^{m} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{m} (x_i - \overline{x})^2 \sum_{i=1}^{m} (y_i - \overline{y})^2}}$$

• Cosine correlation distance

$$d_{eisen}(\mathbf{x}, \mathbf{y}) = 1 - \frac{\mathbf{x}' \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} = 1 - \frac{\left|\sum_{i=1}^{m} x_i y_i\right|}{\sqrt{\sum_{i=1}^{m} x_i^2 \sum_{i=1}^{m} y_i^2}}$$

• Spearman's rank correlation distance

Correlation Coefficient in R

- cor(x, method="pearson")
- "pearson", "kendall", "spearman"

Pairwise calculation to any two collums

- > cor(d_matrix, methods="pearson")
- > cor(t(d_matrix), methods="pearson")

For distance

> d=1- cor(d_matrix, methods="pearson")

	S1	S2	S3	S4	S5	S6
g1						
g2						
g3						
g4						
g5						
g6						

Euclidean vs. Correlation

Are these clustering based on euclidean distance or correlation coeffecient?

 Issues to be consider before performing a cluster analysis

□Which genes/arrays to be use?

- Which distance (similarity or dissimilarity) measures?
- Which method to use to link clusters?
 How to compute the cluster similarity in order to link them?
- □Which clustering algorithm?

Clustering: Cluster similarity

- Four major methods to compute group similarity:
 - Given two clusters c1 and c2
 - Single-link: s(g1,g2)= similarity of the closest pair of points between the two clusters
 - Complete-link: s(g1,g2)= similarity of the furtherest pair of points between the two clusters
 - Average-link: s(g1,g2)= average of similarity of all pairs of points between the two clusters
 - Centroid-link: s(g1,g2)= distance between centroids of the two clusters

Clustering: cluster similarity

Single-link: similarity of the closest pair of points between the two clusters

Complete-link: similarity of the furtherest pair of points between the two clusters

Average-link: average of similarity of all pairs of points between the two clusters

Centroid-link: distance between centroids of the two clusters

Clustering: Cluster similarity

- A comparison of cluster linkage methods:
 - Single-link and complete link: individual decision, more sensitive to outliers
 - Average-link and centroid-link: group decision, less sensitive to outliers

- Issues to be consider before performing a cluster analysis
 - Uhich genes/arrays to be use?
 - Which distance (similarity or dissimilarity) measures?
 - Uhich method to use to link clusters?
 - □Which clustering algorithm?

Type of Clustering algorithm

A partitioning algorithm with a prefixed number k of clusters, that tries to minimize the sum of within-cluster-variances

$$\min\left(\sum_{i=1}^{k}\sum_{x_j\in S_i} \left\|x_j - \mu_i\right\|\right)$$

- Algorithm
 - 1. Randomly choose K points as the center of the K clusters
 - 2. Visit each point to its closest cluster
 - 3. Update the center of each newly formed cluster
 - 4. Repeat steps 2-4 until there is no change to the centers (centroids)(or reach the maximum cycles)

Clustering: cluster similarity

- A partitioning algorithm with a prefixed number k of clusters, that tries to minimize the sum of withincluster-variances
- MUST choose number of clusters K as a priori
 - If K =2, the data will be clustered (partitioned) into two clusters...
 - If K =4, the data will be clustered (partitioned) into two clusters..

— ...

- Use "cclust" package in R
- <u>http://cran.r-project.org/web/packages/cclust/</u> <u>index.html</u>
- > source("http://bioconductor.org/biocLite.R")
- > biocLite("cclust")
- > library(cclust)
- > ALL_exp=exprs(ALL)
- > kc=cclust(ALL_exp,10,200,verbose=TRUE, dist="euclidean", method="kmean") Distance: euclidean or manhattan

• Use "cclust" package in R

> kc=cclust(d,10,200,verbose=TRUE, dist="euclidean", method="kmean")

	a)±0)200)•01k	
Iteration: 1	Changes:	10559
Iteration: 2	Changes:	2293
Iteration: 3	Changes:	929
Iteration: 4	Changes:	795
Iteration: 5	Changes:	789
Iteration: 6	Changes:	890
Iteration: 7	Changes:	871
Iteration: 8	Changes:	747
Iteration: 9	Changes:	645
Iteration: 10	Changes:	564
Iteration: 11	7 Changes:	14
Iteration: 11	8 Changes:	11
Iteration: 11	9 Changes:	5
Iteration: 12	0 Changes:	6
Iteration: 12	1 Changes:	8
Iteration: 12	2 Changes:	5
Iteration: 12	3 Changes:	5
Iteration: 12	4 Changes:	6
Iteration: 12	5 Changes:	3
Iteration: 12	6 Changes:	3
Iteration: 12	7 Changes:	5
Iteration: 12	8 Changes:	3
Iteration: 12	9 Changes:	0

Type of Clustering algorithm

Partitioning: PAM

- PAM: Partitioning around medoids or k-medoids
- Mediod is the "representative point" within a cluster
 - It is different from "centroid" used by k-means, which is the average of the samples within a cluster
 - For example, medoid can be a point which has the smallest sum distance to all other points within the cluster
- The iterative procedure is analogous the one in *K*-means clustering

Clustering: cluster similarity

Partitioning: PAM

- <u>Use "cluster" package in R</u>
- <u>http://cran.r-project.org/web/packages/cluster/</u> <u>index.html</u>
- > source("http://bioconductor.org/biocLite.R")
- > biocLite("cluster")
- > library(cluster)
- > ALL_exp=exprs(ALL)
- > kc=pam(ALL_exp,10,metric = "euclidean")

Distance (metric) : euclidean or manhattan

Type of Clustering algorithm

Dendrogram: Hierarchical Clustering

Brown = Higher expression **Blue = Lower Expression**

Hierarchical clustering

- > ALL_exp=exprs(ALL)
- > dd <- dist(t(ALL_exp), method="euclidean")
 > hc <- hclust(dd, method="centroid")
 or</pre>
- > dd <- as.dist((1 cor(ALL_exp))/2)</pre>
- > hc <- hclust(dd, method="centroid")
 > plot(hc)

Type of Clustering algorithm

HOPACH in R

http://cran.r-project.org/web/packages/hopach/index.html
> source("http://bioconductor.org/biocLite.R")
> biocLite("hopach")

> library(hopach)

> ALL_exp=exprs(ALL)

> hc=hopach(ALL_exp, d = "cor")

d= "cosangle", "abscosangle", "euclid", "abseuclid", "cor", and "abscor".

HOPACH in R

>dplot(ALL_exp[1:100,], kc)

HOPACH - samples - Pearson dist.

- Heatmap shows the distance
 between
 genes
- Dotted lines:
 "breaks"
 between
 clusters

Fuzzy clustering

- In hard clustering, data is divided into distinct clusters, where each data element belongs to exactly one cluster.
- In fuzzy clustering (also referred to as soft clustering), data elements can belong to more than one cluster, and associated with each element is a set of membership levels. These indicate the strength of the association between that data element and a particular cluster.
- Fuzzy clustering can assign data elements to one or more clusters.

Fuzzy clustering

Hard clustering

Fuzzy Clustering

Fuzzy C-Means Algorithm

fanny() computes a fuzzy clustering of the data into k clusters.

> library(cluster)
> ALL_exp=exprs(ALL)
> fannyx <- fanny(ALL_exp, 3, memb.exp =2)</pre>

Midterm

- Will be posted on Friday 10/30.
- Midterm Exam is due by 11/11, Sunday, 11:59PM. Late submission is not accepted.
- Open book
- You can ask me, but cannot discuss with any other people.
- Including some topics, such as DESeq/edgeR, multiple test, enrichment test etc.