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The problem

» After differential expression testing (from RNA-

seq or Microarray assay), a list of P-values can
be obtained, one for each gene.

* Most investigators want to

— |dentify the genes that are differentially expressed

— Estimate the proportion of errors in the list of
selected “differentially expressed genes”



A single gene example (small
scale case)

Suppose you are only interested in a single gene.

You want to compare the expression level (the level of
transcription) of this gene between two conditions
(control and treatment).

For each conditions, there are three replicates.

Experiments are performed on each sample to measure
gene expression levels (e.g., quantitative PCR, gel blot).

A t-test is performed and a p-value is obtained.

Declare there is differential expression if p-value is below
some threshold (e.g., 0.05).



Extreme parallel hypothesis

testing

« With high throughput technology, we can and often
perform the same hypothesis test on each and every
gene.

* Thus, tens of thousands of hypotheses are tested in
parallel.



A naive solution

* Since genes with small p-values are likely to be
differentially expressed, why don’t we just use
the traditional (pre-specified) a = 0.05 to
decide?

dYes?

XINo? But why?




What is P-value?

* P-value is the probability of obtaining a test result as
extreme as the one you are getting under the null
hypothesis (i.e., area in both tails of the distribution).

— Null hypothesis: The difference in average expression
between the two groups is zero.

* The lower the p-value, the less probable the result is.
(assuming the null hypothesis is true).

* Interpretation: if you repeat the same experiment
many times (i.e., computing a T-statistics for each
gene on a microarray), the p-value represents the
proportion of times that you would expect to see a T-
statistic this extreme.



What is P-value?
A more rigorous interpretation

' The results of |
| statistics test |

________________

Negative (Accept null) Positive
i The real status i Truly l(lrr:]ccl)';anged True Negative (U) TFaI:eI I;:,-S;T\(’S)
| of data ' P
[ Truly differentially False Negative True Positive (S)
expressed (ml) Type Il error (T)
Observable

 P-value =Prob(Type | Error) <- describe the false positive rate

 New Interpretation: if you repeat the same experiment many
times (i.e., computing a t-statistic for each gene on a
microarray), the p-value represents the proportion of times
that you would commit a type | error (i.e., false positive call).



What does this mean to RNA-seq/
microarray data?

 The result is that we obtain one p-value for each gene

T1 T2 T3 N1 N 2 N3 T-statistics P-value
G 1 Histogram of pvalues1 T1 P1
G2 . T2 p2
g alpha=0.05
T20000 P20000

G 20000
e 20,000 p-values... oo

* If we use alpha=0.05 to decide differentially expressed
genes, 5% of the 20,000 genes would then be selected by

chance
 That means 1000 genes would be false positives...



A naive solution

* Since genes with small p-values are likely to be
differentially expressed, why don’t we just use
the traditional (pre-specified) a = 0.05 to
decide?

dYes?

ANo!  20,000x0.05 = 1000 false positives!

" |f the investigator is interested in selecting 100 genes for
downstream analysis, they could all be false positives by
chance!

J Other solutions?




The Multiple Testing Problem

* Suppose one test of interest has been
conducted for each of m genes in a RNA-
seq experiment.

* Let py, p,, ..., Pp,,denote the p-values
corresponding to the m tests.

* Let H,,, Hy,, ... , Hy,,denote the null
hypotheses corresponding to the m tests.



The Multiple Testing Problem

* H,: no differential expression for gene |
« H,: differential expression for gene i

* Let one single ¢ serve as a cutoff for
significance:

- Reject H,; if p;< ¢  (declare significant)

- Fail to reject (or accept) H, if p, > ¢
(declare non-significant)

c 1=1,2,....m



The solutions

* To select differentially expressed genes, we
need to do multiple testing (multiplicity)
corrections

— Familywise Error Rate (FWER), such as Bonferroni
correction and Holm’s method: adjust the p-value
threshold from alpha to alpha/(number of genes)

— Control False Discovery Rate: algorithm proposed
by Benjamini & Hochberg

— Re-sampling techniques (i.e., Permutation P-values)



Familywise Error Rate (FWER)

 Traditionally statisticians have focused on
controlling FWER when conducting
multiple tests.

« FWER is defined as the probability of one
or more false positive results:

FWER=P(V>0).

« Controlling FWER amounts to choosing
the significance cutoff ¢ so that FWER is
less than or equal to some desired level a.



The Bonferroni Method

* The Bonferroni Method is the simplest way
to achieve control of the FWER at any
desired level a.

* Simply choose ¢ =a/ m.
* With this value of ¢ for each individual test,

the FWER will be no larger than a for any
family of m tests.



Bonferroni correction

T1 T2 T3 N1 N2 N3 P-value
G1 vl y2 y3 va ) y6 0.012
G2 vl y2 y3 va y5 y6 0.045

G 20000

e using a =0.05 we reject the null hypothesis that the expression
of gene 1 (2) is not changed in tumor versus normal tissue.

* Inthe other words, gene 1 (2) is differentially expressed genes

between tumor and normal tissues.



Bonferroni correction

However, the probability that either the expression difference
observed for gene 1 (p=0.012) or the expression difference
observed for gene 2 (p=0.045) under null hypothesis is
0.012+0.045 =0.057 (>0.05!).

Using an overall p-value alpha = 0.05, we have no evidence to
reject the null hypothesis that the expression of either gene 1
or gene 2 has no change in the comparison between tumor
versus normal tissues.

— Here overall p-value is the probability of making at least 1
mistake in the two performed tests.

— Hence, the a=0.05 is not stringent enough for each test.



Bonferroni correction

* The Bonferroni rule

— To guarantee that the probability of making at least
1 mistake in the two performed tests is not larger
than alpha, we need to use for each test /2 as
significance level

— To guarantee that he probability of making at least
1 mistake in the ten performed tests is not larger
than alpha, we need to use for each test a/10 as
significance level



Bonferroni correction

Genome wide gene expression profiles

T1 T2 T3 N1 N2 N3 P-value
G1 0.012
G2 0.045

G 20000 vl y2 y3 v4 y5 y6 P20000

e 20,000 p-values need to be combined to give an overall
conclusion of how many genes are differentially expressed.



Bonferroni correction

 Hence, under Bonferroni rule, we need to use a
significance level of alpha/20000 for each gene .
— Simply choose ¢ =a / m.
— a=0.05=>c=0a/20000 = 0.0000025

— In other words, under Bonferroni rule, we will select a gene as
differentially expressed if its P-value < 0.0000025. This will
guarantee the probability of making at least 1 mistake in the
20000 performed tests is not larger than 0.05.

* More specifically, out of the genes selected, there is only
very small chance (5%) that at least one of them is a false
positive

— Is this too tough (stringent, conservative)?

dYes (if few genes’p-values are less than a/200000: Game
Over...)



Weak Control vs. Strong Control

* A method provides weak control of an error
rate for a family of m tests if the FWER control
at level a is guaranteed only when all null
hypotheses are true (i.e. when m=m, so the
global null hypothesis is true).

* A method provides strong control of an error
rate for a family of m tests if the FWER control
at level a is guaranteed for any configuration of
true and non-true null hypotheses (including the
global null hypothesis)



Bonferroni’s method can achieve strong control

P(4)+P(B)+P(C)

Assuming the rectangle has probability 1, the three
circles, A, B, C, represents three events. The
probability P(4UBUC), i.e., the probability of A or
B or C, is smaller than P(4)+P(B)+P(C).



Holm’s Method for Controlling FWER

at Level a
* Letpy), Py --- 5 P denote the m p-values
ordered from smallest to largest. (need to sort all
P-values first)
* Find the largest integer k so that
p;<a [ (m-i+1) for all i=1,...,k.
(when you see it first time)

» set ¢ = py, (reject the nulls corresponding to the
smallest k p-values).

 If no such k exists, set ¢ = 0 (declare nothing
significant).



An Example

« Suppose we conduct 5 tests and obtain the
following p-values for tests 1 through 5.

Test 1 2 3 4 5

p-value 0.042 0.001 0.031 0.014 0.007

* Which tests’ null hypotheses will be rejected if
you wish to control the FWER at level 0.057

« Use both the Bonferroni method and the Holm
method to answer this question.



Solution

P-value 0.042 0.001 0.031 0.014 0.007

« The cutoff for significance is ¢ = 0.05/5=0.01 using the
Bonferroni method. Thus we would reject the null
hypothesis for tests 2 and 5 with the Bonferroni method.

T2: 0.001 = 0.05/(5-1+1)=0.01 These calculations indicate
T5: 0.007 < 0.05/(5-2+1)=0.0125 that Holm’ s method would
T4: 0.014 < 0.05/(5-3+1)=0.0167  reject null hypotheses for
T3: 0.031 > 0.05/(5-4+1)=0.025 tests 2, 5, and 4.

T1: 0.042 < 0.05/(5-5+1)=0.05




Adjusted p-value

« P-value: the probability to observe more or equally extreme
data under the null hypothesis.

 Alternatively, a p-value for an individual test can be defined
as the smallest significance level (tolerable type 1 error
rate) for which we can reject the null hypothesis. For
example, if p-value is 0.045, this null hypothesis will be
rejected if a=0.05 but note rejected if a=0.04. The smallest

a to reject this null hypothesis is 0.45 (p-value).

* The adjusted p-value for one test in a family of tests is the
smallest significance level for which we can reject the null
hypothesis for that one test and all others with smaller p-
values.



Adjusted p-values

FWER: the adjusted p-value for one test in a family of tests
Is the smallest FWER (a) for which we can reject the null
hypothesis for that one test and all others with smaller p-

values.

Bonferroni: the null hypothesis will be rejected if unadjusted
p-value < a/m. So the smallest a that can lead to rejection
will be m x p-value, i.e., the adjusted p-value is the raw p-
value times m.

Holms: adjusted p-value for /i-th ordered p-value is

Py X(m—i+l)
The advantage of adjusted p-values: they can be compared
directly with a.



Example

Raw P-value 0.042 0.001 0.031 0.014 0.007
Bonferroni adjusted 0.21 0.005 0.155 0.07 0.035

Reject hypotheses 2 and 5 for Bonferroni’ s method

Holms . o
These calculations indicate

that Holm’s method would
reject null hypotheses for
tests 2, 5, and 4.

0.001*(5-1+1)=0.005
0.007*(5-2+1)=0.028
0.014*(5-3+1)=0.042 <0.05

0.031*(5-4+1)=0.062
0.042*(5-5+1)=0.042



The solutions with R

> results=topTable(fit2, number=20,
adjust.method="xxx"

> results=topTags(fit2, number=20,
adjust.method="xxx"

adjust.method: “holm”, “hochberg”, “hommel”,
“bonferroni”, “BH”, “BY”, “fdr”, “none”



The solutions

* To select differentially expressed genes, we
need to do multiple testing (multiplicity)
corrections

— Familywise Error Rate (FWER), such as Bonferroni
correction and Holm’s method: adjust the p-value
threshold from alpha to alpha/(number of genes)

— Control False Discovery Rate: algorithm proposed
by Benjamini & Hochberg

— Re-sampling techniques (i.e., Permutation P-values)



FDR (False Discovery Rate)

The investigators, after spending thousands of
dollars, want to obtain a list of selected genes

As Bonferroni correction is very strict, only a
few genes might be selected

As an alternative solution, we can choose to
control the proportion of false positives out of
selected genes.

FDR is an alternative error rate that can be
useful for high throughput experiments.



FDR (False Discovery Rate)

Negative Positive Total
T T T Truly unchanged | True Negative (U) False Positive (V MO
| The real status ! y 8 8 (V) - eIError( )
| of data ' P
T Truly differentially | False Negative (T)  True Positive (S) M-MO0
expressed Type Il error
Total W=M-R R M

U: number of true negatives; S: number of true positives

T: number of false negatives; V: number of false positives

In our RNA-seqg/Microarray experiment, M could be 20,000 genes

R is known (i.e., how many genes are called positive by statistics
tests)



FDR (False Discovery Rate)

' The results of |
| statistics test |

_________________

Negative Positive Total
T T T Truly unchanged | True Negative (U) False Positive (V MO
| The real status ! y 8 8 (V) - eIError( )
| of data ' P
T Truly differentially | False Negative (T)  True Positive (S) M-MO0
expressed Type Il error
Total M-R R M

 FDRis defined as the expected proportion of false positives
(type | errors) among all rejected null hypotheses

FDR = E(Q) with O=V/R it R>0
0O=0 if R=0



False Discovery Rate (FDR)

 FDR was introduced by Benjamini and Hochberg
(1995) and is formally defined as
FDR=E(Q)
Q=V/R=False Positive/(True Positive + False
Positive)

* Controlling FDR amounts to choosing the
significance cutoff ¢ so that FDR is less than or
equal to some desired level a.

* More specifically, if we want to control at most 5%
false positives, which genes should be selected?



FDR (False discovery rate): How?

* The Benjamini & Hochberg procedure to
control FDR :

— For each gene (out of a total of n ), perform one
test

— Obtainm P-values: Py, p,, ..., Pm
— Sort the obtained P-values: P, P2y, ...,Pm)

— To control the FDR at g, we will reject all genes with
p-values P = p;y, where; is the largest index for
which qj

p < —
(/) m



FDR (False Discovery Rate):
An Example of 10 genes

e Aim: To control the FDR at level of 5%

—————————=

|
. P-values - .009 | .001 | .065 | .04 |.454 |.123 |.172 |.007 | .68 |.003

____________




FDR (False Discovery Rate):
An Example of 10 genes

 Aim: To control the FDR at 5% (¢ =0.05)

__________

IL_F_’_\@I_UEi' .009 (.001 |.066 |.04 |.465 |.12 |.182 |.007 |.069 | .003
. Sorted |

I

'Index j | 1 | 2| 3|4 ]|5]|6 | 7| 8] 9|10

.001 | .003 | .007 | .009 | .04 | .066 | .069 | .12 | .182 | .465

—— e ——— — —— — — _______|

__________________



FDR (False Discovery Rate):
An Example of 10 genes

 Aim: To control the FDR at 5% (¢ =0.05)

__________

' P-values 2> .009 | .001 | .066 | .04 | .465].12 |.182].007 | .069 | .003
. Sorted |
' Index j | 1 | 2| 3| 4|5 |6 | 7| 8] 9|10
| Ihaex ] |
.001 | .003 | .007 | .009 | .04 |.066|.069 | .12 |.182 | .465
Sorted P-values | cutoff: ¥ -0 05xj /10
m

.005(.01 |.015(.02 |.025|.03 |.035|.04 |.045 .05




FDR (False Discovery Rate):
An Example of 10 genes

 Aim: To control the FDR at 5% (¢ =0.05)

' P-values 2> .009 | .001 | .066 | .04 | .465].12 |.182].007 | .069 | .003
. Sorted |
' Index j | 1 | 2| 3| 4|5 |6 | 7| 8] 9|10
| Ihaex ] |
.001 | .003 | .007 | .009 | .04 |.066|.069 | .12 |.182 | .465
Sorted P-values | cutoff: ¥ -0 05xj /10
m

.005(.01 |.015(.02 |.025|.03 |.035|.04 |.045 .05

P, =2 =005xj/10
m
.001 | .003 | .007 | .009 | .04 | .066 | .069 | .12 |.182 | .465




How about Bonferroni correction?
The Same Example of 10 genes

 Aim: Use Bonferroni correction, a=0.05

—————————=

|
. P-values - .009 | .001 | .065 | .04 |.454 |.123 |.172 |.007 | .68 |.003

____________




How about Bonferroni correction?
The Same Example of 10 genes

 Aim: Use Bonferroni correction, a=0.05

T |

lL_E:\@!lf_e_S_l » .009 | .001 | .065 |.04 |.454 |.123 |.172 |.007 | .68 |.003
' Sorted |

A

' Index j 1 2 3 4 5 6 7 8 9 10

.001 | .003 | .007 | .009 | .04 | .066 | .069 | .12 | .182 | .465

cutoff: £ =0.05/10 =0.005

m



How about Bonferroni correction?
The Same Example of 10 genes

 Aim: Use Bonferroni correction, a=0.05

|
P-values <=2 .009 | .001 | .065 | .04 |.454 |.123 |.172 |.007 | .68 |.003

____________

_________

—_—_—— - - ——a

.001 | .003 | .007 | .009 | .04 | .066 | .069 | .12 | .182 | .465

p<£-005/10=0.005
m

.001 | .003 | .007 | .009 | .04 | .066 | .069 | .12 |.182 | .465




Adjusted p-values (g-values)

If we use FDR as the significance threshold,
the adjusted p-value for one test in a family of
tests is the smallest FDR for which we can
reject the null hypothesis for that one test and
all others with smaller p-values.

In FDR setting, adjusted p-values are also
called g-values. g-value is derived in an
empirical Bayes setting, but it is equivalent to
adjusted p-value in practice.



The adjusted p-value or g-value for a given test fills
the blanks in the following sentences:

« “If | set my cutoff for significance ¢ equal to this p-
value, | must be willing to accept a false discovery rate
of ”

«  “To reject the null hypothesis for this test and all others

with smaller p-values, | must be willing to accept a false
discovery rate of ”

« “To include this gene on my list of differentially
expressed genes, | must be willing to accept a false
discovery rate of ”



Computation and Use of g-
values

Let g denote the g-value that corresponds to
the i smallest p-value p.

gy=min{p,ym/k:k=i..m}.



The solutions with R

> results=topTable(fit2, number=20,
adjust.method="fdr", Ifc=1)

> results=topTags(fit2, number=20,
adjust.method="fdr”)

adjust.method: "holm", "hochberg", "hommel",
"bonferroni", "BH", "BY ", "fdr", "none”
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