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Why?

~— Figure 5. De Novo Assembly with Mate Pairs -
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Using a combination of short and long insert sizes with paired-end sequencing results in maximal coverage of the genome for de novo
assembly. Because larger inserts can pair reads across greater distances, they provide a better ability to read through highly repetitive
sequences and regions where large structural rearrangements have occurred. Shorter inserts sequenced at higher depths can fill in gaps
missed by larger inserts sequenced at lower depths. Thus a diverse library of short and long inserts results in better de novo assembly,
leading to fewer gaps, larger contigs, and greater accuracy of the final consensus sequence.
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Distribution of distances between two
paired-end reads
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Scaffolding

* Scaffolding groups contigs into subsets
with known order and orientation.

* Nodes are contigs

* Directed edge is between two nodes if
they are adjacent in the genome.

Contig1 > Contig 2



Scaffolding

* Mate pairs, if in different contigs, have a
chance of being neighbors.

Mate pairs orient contigs during assembly

/ First 25bp

—
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DNA fragment of known length /

Last 25bp
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Scaffolding Algorithm
* Find all connected components

* Find a consistent orientation for all nodes in the
graph (all contigs).
— Nodes (contigs) have two types of edges
* Same orientation
* Different orientation

— Make sure linked contigs have consistent
orientation.

— Optimization problem — find the smallest number
of edges to be removed so that all contigs have
consistent orientation.

* Find the Hamiltonian path again.



Scaffolding software

Some assembly software, such velvet, can do scaffolding
as well.

Bambus - http://www.cbcb.umd.edu/software/bambus

SSPACE -
http://www.baseclear.com/landingpages/basetools-a-
wide-range-of-bioinformatics-solutions/sspacev12/

GRASS - http://code.google.com/p/tud-scaffolding/
Volvet and Soap-denovo have buid-in scaffolding tools.




Additional techniques for orientation

* Physical mapping. Using information from Bacterial
Artificial Chromosome (BAC)-based physical maps.
Physical maps are built by clustering together of
BACs sharing portions of a DNA “fingerprint,” which
is a pattern of DNA fragments of various sizes.

* Using markers along a DNA strand as independent
information for scaffolding software. Markers are
known sequences of nucleotides and tags. Markers
are searched in the contigs.

e Using large scale maps of landmarks that lie along
the the chromosomal DNA.



Scaffolding

e Additional information is also useful:

— Sequences of closely related organisms are also
used as scaffolding information.

Example: aligning scaffolds of a mouse genome to
the human genome



With reference genome

3,063,596 1
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Scaffolding: Issues

* Errorsinlength of inserts (affecting distances between
clone mates)
* Physical mapping is error prone.

 first builds a sequence based on linking information
with high confidence, then factors in linking information

with lower confidence.
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Repeat Control Issues

* Assembly programs should detect repeats in
the assembly process and not after.

—Ilncorrect genome reconstruction

* Assemblers should try to resolve correctly as
many repeats as possible.

— Avoid intensive human labor



Repeat Control — When? & How?

* pre-assembly: find fragments that belong to repeats
— statistically (most existing assemblers)
— repeat database (RepeatMasker)

* during assembly: detect "tangles" indicative of repeats

(Pevzner, Tang, Waterman 2001) v

------ o

—
* post-assembly: find repetitive regions and potential

mis-assemblies.
— Reputer, RepeatMasker

— "unhappy" mate-pairs (too close, too far, mis-
oriented) 21




Detecting repeats
pre-assembly:

e Statistical methods

— Assemblers assume that reads are sampled
uniformly at random.

— Significant deviations from average coverage
flagged as repeats.

— frequent k-mers are ignored

— “arrival” rate of reads in contigs compared
with theoretical value.
(e.g., 800 bp reads & 8x coverage - reads "arrive" every 100 bp)



Detecting repeats
during assembly

 Example: In Euler assembly program

— Finds repeats by complex parts of the graph
constructed during the assembly process.

— Researchers look into these complex areas to try
and resolve repeats.

— Assemblers can use clone mate information to
find incorrect assemblies. This is based on finding
clone-mate pairs too close or too far from one
another. (“unhappy” mate-pairs)



Detecting repeats
post-assembly: Mis-assembled repeats
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Repeat resolution

* Assemblers deduce that areas covered by a large
number of reads may show an over-collapsed
repeat.

* Problems with this - samples are not uniformly
distributed (for example, non-random libraries and
poor clonability regions). leads to false positives.

* Repeats with low copy number are missed - leads

to false negatives.

25



Repeat resolution

 Techniques for repairing sequencing errors during repeat
resolution

— find clusters of reads where the clusters share
differences.

* For example, four reads contain an A, four contain a B.
it is likely that the first four reads are from one copy
and the last four from a different one.

— Drawbacks are if certain areas of the sequence
have low coverage.

— Difficult to separate from true polymorphism



Assembled genome validation

Quality at the nucleotide level for contigs can be
used to detect fine-scale inaccuracies, such as
substitution and indel errors.

Method 1: Once assembled, a base is assigned a
consensus quality score (CQS) depending on its read
depth and the quality of each base contributing to
that position. (Huang and Madan 1999, Genome
Research, 9: 868—-877).

Method 2: A multiple sequence alignment of reads
is constructed and a consensus sequence along with

a quality value for each base is computed for each
contig.



Assembled genome validation

 Method 3: a statistical and comparative genomics
method that quantifies the fine-scale quality of a
genome assembly and that has the merit of being
complementary to the aforementioned approaches.

 This approach estimates the abundance of indel errors
between aligned genome pairs, by separating these
from true evolutionary indels.

* indel mutations leave a precise and determinable
fingerprint on the distribution of ungapped alignment
block lengths. These block lengths, which represent
distances between successive indel mutations are
intergap segment (IGS) lengths.
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Under the neutral indel model,
these inter-gap segment (1GS)
lengths are expected to follow a
geometric frequency distribution.

Meader et al., Genome Research, 2010, 20(5):675



Assembled genome validation

Compare with existing genes.

CEGMA: Core Eukaryotic Genes Mapping Approach

* Looks in your assembly for genes that should be
there

* Usually best assembly have best CEGMA score

http://korflab.ucdavis.edu/datasets/cegma/




What makes an assembly good?

High coverage: 50 to 300X

Different but precise insert size libraries (Paired end
from different library sizes will allow you to stitch across
several repeat type.)

Avoid large number of variant.
Error Correction: Correct the read before assembly



What makes your assembly better?

IMAGE: Gap FI”Ing improve draft genome assemblies by aligning
sequences against contig ends and performing local assemblies to produce gap-

spanning contigs.
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Gene annotation

RAST http://rast.nmpdr.org/

|GS Prokaryotic Analysis Engine
Services(
http://ae.igs.umaryland.edu/cgi/index.cgi)

AGeS http://www.bhsai.org/ages.html

BG7 http://bg7.0hnosequences.com/

Prokka
http://www.vicbioinformatics.com/
software.prokka.shtml




Gene annotation

Prodigal (Hyatt 2010) gene prediction and
Coding sequence (CDS)

RNAmmer (Lagesen et al., 2007) rRNA genes

Aragorn (Laslett et al, 2004) Transfer RNA genes

SignalP (Petersen et al., 2011) Signal leader peptides

Infernal (Kolbe and Eddy, 2011) Non-coding RNA



Protein function annotation

Databases:
(1) Bacterial proteins in UniProt and RefSeq
(2) Protein domains in Pfam and TIGRFAMSs

Searching tools:
(1) Blastp
(2) Hidden Markov Model (HMMER 3.0)
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Gene annotation
for an assembled
plasmid

Example



Discussion:
Virtual genome assembly

Plant mitochondrion genome 500,000 bp DNA circular

How can you get mitochondria DNA? What problems do we need to concern for
this step?

For DNA fragmenting, what sizes of DNA fragments will you use? A. 1Kbp, B. 5kbp,
C. both

Pair-ended or single ended?

What depth do you sequence? how many lanes do you need if you use illumina
hiseq 20007 or how many reads do you need to get?

Which assembler will you use? Why?

What computer do you used to do assemble? A. 4GB laptop B. 50GB workstation
C. computer cluster in HCC

According to your estimate, how long does it take for assemble? A. 30 minutes B.2
hours C. 12 hours D. 4 days

What software do you used to do scaffold? how long does it take?

What is longest gap in one scaffold? How do you fill gaps?

How do you determine if your assembled genome is good enough?

how do you annotate genes?

On Thursday



