Next-generation sequencing



Assembly

* Assembly algorithms
» Greedy algorithms (SSAKE, VCAKE)
» Overlap Layout Consensus (Newbler, Mira)

» De brujin graphs (Velvet, ABySS, Soap-
denovo)

 De novo whole genome assembling strategies
 Mapping assembling strategies



De Novo sequencing

New species/strains

Challenge of assembly with short reads

— 100x coverage of 3 GB genome with 100 bp reads= 3G
fragments

— Exponential problem for all-vs-all algorithm (overlap)
Big problem with repeats

Assemble contigs, fill gaps

Paired-end reads are essential



Shotgun Sequencing

Large DNA molecule

,1, fragmentation

Shotgun sequencing \/ \/
is a laboratory pi—
technique for - — = —

determining the DNA / \
CATACACGTAGCTATACG
sequence of an Assembly o

. | A e oing GCTATCAGGCTAGGTTA
organism's genome. v

Assembled GCTATCAGGCTAGGTTACAGTGCATGCATACACGTAGCTATACG

sequence

* Breaking the genome into a collection of small
DNA fragments

* Sequencing.
* Reconstitute the genome.



Assembly Pipeline
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Shotgun sequencing
statistics



Typical contig coverage
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[.ander-Waterman statistics
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Smith-Waterman algorithm for sequence comparison



Example

Genome size: 1 Mbp Read Length: 600

N #1slands | #contigs | bases not in | bases not in
any read contigs
1,667 655 614 698 367,806
5,000 304 250 121 49,787
8,334 78 57 20 6,735
13,334 7 5 1 335




Experimental data

cov?rage # ctgs % >2X avg ctg size (L-W) | max ctg size | # ORFs
1 284 54 1,234 (1,138) 3,337 526
3 597 67 1,794 (4,429) 9,589 1,092
5 548 79 2,495 (21,791) 17,977 1,398
8 495 85 3,294 (302,545) 64,307 1,762

complete 1 100 1.26 M 1.26 M 1,329

Numbers based on artificially chopping up the genome of
Wolbachia pipientis dMel




Errors in Lander-Waterman Estimate

Lander-Waterman has limitations:
* repeats

* GC/AT rich regions

e other low complexity regions

* cloning biases in shotgun libraries



Expected average contig length for a range of different read lengths and coverage values.
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Dog: 2.5 billion bp
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Input sequence

Contigs
Organism/genome Avgerage No.of Read Pair
size Assembler/status® Type Pair size read (bp) reads coverage® coverage® No. N50 Max Total
Human (H. ABYSS published GA 210bp 3546 3.5B 45X 120x 276 M 1.5kb 18.8kb 2.18 Gb
sapiens)/3.0 Gb 2009
Grapevine (V. Sanger 2-10kb 579 595M  6.9X 21X

Myriad published

2007 Sanger 40 kb 460 144k  0.13x 44x 58,611 18.2kb 238kb 531 Mb?

Sanger 120 kb 369 68 k 0.02x 4.2X
454  None 169 125M  4.2X —

vinifera)/500 Mb

Cucumber (C.
sativus)/367 Mb

Sanger 2-6 kb 439 2.08M 3.35X 9.9X

RePS2 published o der 40kb 496 339K  0.46x  16.7x

62,412 19,807 NR 226 Mb

2002 sanger 140kb 551 332k 0.04x  5.6x
GA 200bp 42 282M 325x 768X NR 26kb NR 204 Mb
GA 400bp 44 173M  20.6X  94.4X
GA  2kb 53 105M 153x 286X  NR 125kb NR 190 Mb
Panda (A. COAPdenove GA 150 45  131B  245x 433X
melanoleura)/2.4 Gb *ONCENNO - GA 500 67 917M 255x 902X 200,604 36,728 434635 2.25 Gb
P GA  2kb 71 397M  11.8X 192
GA  5kb 38 505M 80X  533x
GA  10kb 35  254M  3.7X 571
Shavdberry(F CABOG and 454 Nonme 209 7.73M  7.3x _
s Velvet 454 None 368 787M  13.2x — 16,487 28,072 215,349 202 Mb
announced 454 2.5kb 193 2.39 M 2.1X% 6.9%
454  20kb 236 1.8M  1.7X 20
GA None 76 36 M 12.4X% —
SOLD  2kb 25  130M 014X 6.4
454 3kb 180  6M 1% 8x
T”'k‘;,y (M. Y CABOG g 454 20kb 195 2M  0.3x 18 128,271 12,594 90kb 931 Mb
galiopavo)/1. announce 454 None 366 13M  4x _
GA 180bp 74 200M 13X 16x

GA None 74 200 M 13>Schatz M-C et al. Genome Res. 2010;20:1165-117:




One more example

For yeast 12Mbp

* read length: 200-400 bp

e coverage: 50X (how many reads do we
need?)

 paired-end read insert size: 8kb (better to
make multiple libraries with different insert

sizes.)



Paired-end sequencing

* Paired-End sequencing (for Mate-pairs)
— Sequence two ends of a fragment of known size.

/ First 25bp

————————— >
I

\ |
DNA fragment of known length /

Last 25bp

— Currently fragment length (insert size) can range from 200
bps — 10,000 bps

— Paired-end sequencing is helpful for assembly and locating
repeat. It also can detect rearrangements, including
insertions and deletions (indels) and inversions.

— As paired end reads are more likely to align to a reference,
the quality of the entire data set improves



i Paired-end sequencing
1Fragmcnt (200-500bp) by I I I u m i n a

Solid-phase amplification and
Cyclic reversible termination

A simple modification to the
standard single-read DNA
library preparation.

Both the forward and reverse
e template strands of each
cluster can be sequenced.




Mate-pair libraries

b o
llumina 5 Roche 454 SOLID
'I‘ 1 1
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Use computer software to
remove adaptor sequences Berglund et al. Investigative Genetics 2011 2:23



difference

Mate-pair is a specific type of library;
paired-end is a type of sequencing
mate-pair libraries require paired-end sequencing

The decision to use mate-pair vs. standard
libraries depends upon your application.

Mate pair allows you to have your pairs be much
farther apart, which can be more informative
than the standard paired-end protocol.



Why?

~— Figure 5. De Novo Assembly with Mate Pairs -
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Using a combination of short and long insert sizes with paired-end sequencing results in maximal coverage of the genome for de novo
assembly. Because larger inserts can pair reads across greater distances, they provide a better ability to read through highly repetitive
sequences and regions where large structural rearrangements have occurred. Shorter inserts sequenced at higher depths can fill in gaps
missed by larger inserts sequenced at lower depths. Thus a diverse library of short and long inserts results in better de novo assembly,
leading to fewer gaps, larger contigs, and greater accuracy of the final consensus sequence.




Strategies

 Coverage. The more, the better. De
novo assembly, > 50x. But we usually
want to have at least 300x.

 Multiple libraries with different
insertion length. 800bp PE, 1kbp MP,
10k MP.



Assembly Pipeline
& estimate

Scaffolding

\V4
Repeat
Removin

Velvet: small genomes

ABySS: large genome




Some issues

 For small genome, like bacteria, use Velvet.

* Forlarge genome, use AByYSS or Soap-denovo.

* For tools based on the De Bruijn graph, we need
to find the optimal length of k-mer.
* VelvetOptimiser (21-121bp)

e http://dna.med.monash.edu.au/~torsten/
velvet advisor/

* Try different assemblers for a comparison




Assessing Assembly Quality

* Why do we need QC?

— Misassembly correction is expensive

— some assemblers have a simple quality-control
method that does not capture larger errors

e Common measures of quality:

— number and sizes of contigs (N50)
* Assumption: few large contigs is better than many small contigs.

* True because there are less gaps in the former, but, does not account
for the possibility of misassemblies.

— And more ..
— Compare with a complete sequence



Assembly validation

N50 is the most commonly used metric:

Weighted median such as 50% of your assembly is
contained in contigs with length >=N50

1. Make a list L of positive integers (contig lengths).
2. Create another list L', which is identical to L, except
that every element n in L has been replaced with n

copies of itself.
3. The median of L' is the N50 of L.



Assembly validation

For example:

L=12,2,2,3,3,4,8, 8},

L'={2,2, 2,2, 2,2, 3,3,3, 3,3,3,4,4,4,4, 8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8}

N50 of L is the median of L’.
N50=(4+8)/2 = 6.



Assembly validation

While the N50 value thus quantifies the ability of the
assembly algorithm to combine reads into large
seamless blocks, it fails to capture all aspects of
assembly quality.

For example, artificially high N50 values can be
obtained by lowering thresholds for amalgamating
smaller blocks of contiguous reads, resulting in
misassembled contigs.

N50 values fail to reflect fine-scale inaccuracies, such
as substitution and indel errors.



Assembly Pipeline

Preprocess
& estimate

Assembling

Scaffolding <
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Scaffolding

* Scaffolding groups contigs into subsets
with known order and orientation.

* Nodes are contigs

* Directed edge is between two nodes if
they are adjacent in the genome.

Contig1 > Contig 2



Scaffolding

* Mate pairs, if in different contigs, have a
chance of being neighbors.

Mate pairs orient contigs during assembly

/ First 25bp

—
\ P
DNA fragment of known length /

Last 25bp



Scaffolding

|
Contigs from assembly

Align reads from short
insert or long insert
library

Join contigs using evidence from
‘ paired end data

Scaffold



Scaffolding Algorithm
* Find all connected components

* Find a consistent orientation for all nodes in the
graph (all contigs).
— Nodes (contigs) have two types of edges
* Same orientation
* Different orientation

— Make sure linked contigs have consistent
orientation.

— Optimization problem — find the smallest number
of edges to be removed so that all contigs have
consistent orientation.

* Find the Hamiltonian path again.



Scaffolding software

Some assembly software, such velvet, can do scaffolding
as well.

Bambus - http://www.cbcb.umd.edu/software/bambus

SSPACE -
http://www.baseclear.com/landingpages/basetools-a-
wide-range-of-bioinformatics-solutions/sspacev12/

GRASS - http://code.google.com/p/tud-scaffolding/




Additional techniques for orientation

* Physical mapping. Using information from Bacterial
Artificial Chromosome (BAC)-based physical maps.
Physical maps are built by clustering together of
BACs sharing portions of a DNA “fingerprint,” which
is a pattern of DNA fragments of various sizes.

* Using markers along a DNA strand as independent
information for scaffolding software. Markers are
known sequences of nucleotides and tags. Markers
are searched in the contigs.

e Using large scale maps of landmarks that lie along
the the chromosomal DNA.



Scaffolding

e Additional information is also useful:

— Sequences of closely related organisms are also
used as scaffolding information.

Example: aligning scaffolds of a mouse genome to
the human genome



Scaffolding: Issues

* Errorsinlength of inserts (affecting distances between
clone mates)
* Physical mapping is error prone.

 first builds a sequence based on linking information
with high confidence, then factors in linking information

with lower confidence.



Assembly Pipeline
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