Next-generation sequencing
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NGS

Introduction to the background
NGS workflow and accuracy

Data format, quality control, data management

Assembly: sequence assembly refers to aligning and
merging fragments of a much longer DNA sequence in
order to reconstruct the original sequence.

RNA-seq

— Aligner

— Analysis tools

— Applications, such as MiRNA
Chip-seq

— Applications



Goals of Assembly

* Reconstruction of unknown genomes
— viruses, bacteria
— Eucaryotes (individual genomes)
— metagenomics (environmental samples, microbial
communities)
* RNA-Seq => transcriptomes
— for organisms without reference genomes
— novel transcripts
— fusion genes
— viral integration
* Local assembly for detection of insertions and
genomic rearrangements
— unmapped reads from WGS
— transposable elements
— viral integration



Next-generation sequencing

* Much higher throughput (1-4gbps / day)
* Lower cost / base pair

* Inherent ability to do paired-end (mate-pair)
sequencing



Assembly

sequence assembly refers to aligning and
merging fragments of a much longer DNA
sequence in order to reconstruct the original
sequence.

Taking many copies of a book, passing each of
them through a shredder with a different
cutter, and piecing the text of the book back
together just by looking at the shredded pieces.

Combines short sequencing reads into contigs
nased on sequence similarity and overlap
petween reads.

-ind the shortest common sequence of a set of
reads




Assembly

e Spanner: single read that spans a repeat instance with
sufficient unique sequence on either side of the repeat.

* Contig: contiguous sequence formed by several
overlapping reads with no gaps.

* Supercontig (scaffold): ordered and oriented set of
contigs, usually by mate pairs. Relative distance known
=> fill gaps between contigs with “NNNNNNNNN...”

* Consensus sequence: sequence

derived from the multiple

alignment of reads in a contig. — =

GIUCGAT TANNGTAUGATGTNUGAGGGAGAGU I



Challenges for Assembly

Repeats or similar parts in the genome. The reads
originating from different copies of a repeat
appear identical to the assembler and cause
assembly errors. RPT A1 RPT A2

B
— — — — =

==
Non-random shearing

Lose DNA fragments during library preparation
Bias during amplification

Very short fragment lengths (25-200bps)

High error rate




Assembly

* Assembly algorithms
* De novo whole genome assembling strategies
* Mapping assembling strategies



Assembly algorithms

* Assembly, finding an optimal path that

connect all short reads (or part of short reads)
once time, is NP-hard problem.

e No efficient solution.

— We need to use some approximation algorithm.



Assembly Algorithms

Main algorithm used:

* Greedy algorithms

* Overlap Layout Consensus
* De brujin graphs
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Alternative Greedy Algorithm

* Instead of calculating overlaps of all reads:
1. Start with a random read as an initial contig (seed)

2. Go over all unassembled reads, pick the one that
best fits the 3' end of the contig and elongate the
contig by this read.

3. Repeat step 2 until no elongation is possible
anymore.

4. Repeat step 2 for the 5' end of the reverse
complement of the contig.

5. Stop in case of a conflict (fork)

* if two reads that do not overlap with each other
could elongate the contig equally well.



Greedy Assembly

* Advantages:

— Simple and easy to implement

— effective
* Disadvantages

— Since local information is considered at each step, the
assembler can be easily confused by complex repeats,
leading to mis-assemblies.

— Local approach. Easy to be trapped into a local

optimal solution (local minimum).

— Early mistakes create bad asseFEralines.
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Greedy Assemblers

TIGR Assembler: ftp://ftp.jcvi.org/pub/software/assembler/,
Sanger, 2003

SSAKE:

http://www.bcgsc.ca/platform/bioinfo/software/ssake , small
genomes, Solexa/lllumina, 2007

SHARCGS: http://sharcgs.molgen.mpg.de/, small genomes,
Solexa/lllumina, SOLiD, Sanger, 454, 2007

VCAKE: http://sourceforge.net/projects/vcake , small
genomes, Solexa/lllumina, 2007

Phrap: http://www.phrap.org/, Sanger, 454, Solexa,
1995-2008
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Assembly Algorithms

Main algorithm used:

* Greedy algorithms

* Overlap Layout Consensus
* De brujin graphs



Graph model for Assembly

Graphs are made up by vertices (nodes) and

A edges (links).
B G=(V,E)
D V: a finite set of vertices.

E: edges of the graph

C
(a)
Graph for Assembly:
 Graph model. A node
is a read or a k-mer (b)
subsequence

* Edge: if there are
over lap between two
k-mer subsequence (C)

aacc

aaccgg
ccggtt

\ 4

accg

\ 4

cCgg

\ 4

cggt

\ 4

ggtt

Miller, 2010



Overlap-layout-consensus

Main entity: read Graph model:
: , . * Anodeisa
Relationship between reads: overlap Edge: if there are
overlap between two
1 4 7
2 5 3 reads

o — ACCTGA
6% 2 ACCTGA
AGCTGA

ACCAGA




Overlap-layout-consensus
Step 1: Find Overlapping Reads

* What reads are intersecting ?
* |ssues:

1. Need efficient alignment algorithm
(parallelization and index based strategies)

2. Doesn’t scale well when number of read is high

3. Use seed based alignment with extension

TACATAGATTACACAGATTACTGA

N RRE RN RRRRE

TAGTTAGATTACACAGATTACTAGA



Overlap-layout-consensus
Step 2: Construct overlap graph

 Agraph is constructed:
— Nodes are reads
— Edges represent overlapping reads

* Need to simplify graph, such as remove redundant
nodes and edges.

Overlap graph

ATTCACGTAG



Overlap-layout-consensus
Step 3: Consensus stage, Find Contigs

Try to find the Hamiltonian path:
A pathin the graph contains each node exactly once.

* Following the Hamiltonian path, combine the
overlapping sequences in the nodes into the
sequence of the genome

e Computationally expensive (NP-hard problem)

ATTCACGTAG



Travelling salesman problem

* The travelling salesman problem (TSP) asks
the following question: Given a list of cities
and the distances between each pair of cities,
what is the shortest possible route that visits
each city exactly once and returns to the
origin city?




Circular genome

* Hamiltonian circuit: visit each node (city)

exactly once, returning to the start
B C D




Overlap-layout-consensus

Better than Greedy algorithm. It can generate correct
order of contigs that the Greedy algorithms may have
errors.

No efficient algorithm to find the Hamiltonian path

Short fragment length = very small overlap therefore
many false overlaps.

Overlap discovery is sensitive to minimum overlap length
and minimum percent identity required for an overlap.

Overlap discovery is also time consuming.

Large number of reads + short overlap + higher error are
challenging for the overlap - layout - consensus approach

Can’t assemble repeat longer than read length
It is mostly used with Sanger or 454 data.



Overlap-layout-consensus

Celera (CABOG):

http://www.jcvi.org/cms/research/projects/celera-

assembler/overview/ , large genome, Sanger,
454 Solexa, 2004/2010

Newbler: http://www.454.com/ , 454, Sanger, 2009
Mira:
http://sourceforge.net/apps/mediawiki/mira-
assembler/ Sanger, 454, Solexa, 1998/2011

Edena: http://www.genomic.ch/edena.php Snger,
454, 2008/2013




Assembly Algorithms

Main algorithm used:

* Greedy algorithms

* Overlap Layout Consensus
* De bruijn graphs



d

[ TAGTCGAGGCTTTAGATCCGATGAGGCTTTAGAGACAG ] i 1 Sequencing

(for example, Solexa or 454)

AGTCGAG  CTTTAGA CGATGAG CTTTAGA
GTCGGG TTAGATC ATGAGGC  GAGACAG
GAGGCTC ATCCGAT  AGGCTTT GAGACAG
AGTCGAG TAGATCC  ATGAGGC  TAGAGAA
TAGTCGA CTTTAGA CCGATGA TTAGAGA
CGAGGCT AGATCCG TGAGGCT  AGAGACA 1
TAGTCGA GCTTTAG TCCGATG  GCTCTAG

TCGACGC GATCCGA GAGGCTT AGAGACA
TAGTCGA  TTAGATC
GTCGAGG  TCTAGAT

GATGAGG TTTAGAG
ATGAGGC TAGAGAC

AGGCTTT ATCCGAT AGGCTTT GAGACAG
AGTCGAG TTAGATT ATGAGGC AGAGACA 2
GGCTTTA TCCGATG TTTAGAG

2. Hashing

CGAGGCT TAGATCC TGAGGCT GAGACAG
AGTCGAG TTTAGATC ATGAGGC TTAGAGA

GAGGCTT GATCCGA GAGGCTT GAGACAG
Linear stretches
%
()
.
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3. Simplification of linear

AGAA

4. Error (tip and bubble) removal‘ Bubble

AGATCCGATGAG

. -
TAGTCGAG GAGGCTTTAGA AGAGACAG

stretches 4.

De Bruijn Graphs

Get k-bp (k-mer) subsequences for
reads.
k-mers in the reads are collected
into nodes and the coverage at
each node is recorded. Link two k-
mer nodes if they have overlap.
the graph is simplified to combine
nodes that are associated with the
continuous linear stretches into
single, larger nodes of various k-
mer sizes.
error correction removes the tips
and bubbles that result from
sequencing errors and creates a
final graph structure that
accurately and completely
describes in the original genome
seguence.

Flicek, Nature Methods, 2009



Differences between an overlap graph and a de Bruijn graph for assembly.

A Read Layout B Overlap Graph

¢ GACCTACA
ACCTACAA
CCTACAAG
CTACAAGT
TACAAGTT
ACAAGTTA
CAAGTTAG
TACAAGTC
ACAAGTCC
CAAGTCCG

NKX QD> D DoD

Schatz M C et al. Genome Res. 2010;20:1165-1173

Copyright © 2010 by Cold Spring Harbor Laboratory Press



De Bruijn Graphs example

For the purposes of illustration, we can use human readable text
to explore how assemblies work.

This is an example taken from Leipzig et al 2001.
In it he uses the opening paragraph from Dickens
cities”.

It is an appropriate example because like genomes, it contains
strings that are repeat over and over.

)

A tale of two

“It was the best of times, it was the worst of times, it was the age of
wisdom, it was the age of foolishness, it was the epoch of belief, it was

the epoch of incredulity,.... “
Dickens, Charles. A Tale of Two Cities. 1859. London: Chapman Hall

Velvet example courtesy of J. Leipzig 2010



De Bruijn Graphs example

itwasthebestoftimesitwastheworstoftimesitwastheageofwisdomitwastheageoffoolishness...

Generate random ‘reads’ ‘ f How do we assemble?

fincreduli geoffoolis Itwasthebe Itwasthebe geofwisdom itwastheep epochofinc timesitwas stheepocho nessitwast wastheageo theepochof stheepocho hofincredu
estoftimes eoffoolish lishnessit hofbeliefi pochofincr itwasthewo twastheage toftimesit domitwasth ochofbelie eepochofbe eepochofbe astheworst chofincred theageofwi
iefitwasth ssitwasthe astheepoch efitwasthe wisdomitwa ageoffooli twasthewor ochofbelie sdomitwast sitwasthea eepochofbe ffoolishne eofwisdomi hebestofti
stheageoff twastheepo eworstofti stoftimesi theepochof esitwasthe heepochofi theepochof sdomitwast astheworst rstoftimes worstoftim stheepocho geoffoolis
ffoolishne timesitwas lishnessit stheageoff eworstofti orstoftime fwisdomitw wastheageo heageofwis incredulit ishnessitw twastheepo wasthewors astheepoch
heworstoft ofbeliefit wastheageo heepochofi pochofincr heageofwis stheageofw fincreduli astheageof wisdomitwa wastheageo astheepoch olishnessi astheepoch
itwastheep twastheage wisdomitwa fbeliefitw bestoftime epochofbel theepochof sthebestof lishnessit hofbeliefi Itwasthebe ishnessitw sitwasthew ageofwisdo
twastheage esitwasthe twastheage shnessitwa fincreduli fbeliefitw theepochof mesitwasth domitwasth ochofbelie heageofwis oftimesitw stheepocho bestoftime
twastheage foolishnes ftimesitwa thebestoft itwastheag theepochof itwasthewo ofbeliefit bestoftime mitwasthea imesitwast timesitwas orstoftime estoftimes
twasthebes stoftimesi sdomitwast wisdomitwa theworstof astheworst sitwasthew theageoffo eepochofbe theageofwi foolishnes incredulit ofbeliefit chofincred beliefitwa
beliefitwa wisdomitwa eageoffool eoffoolish itwastheag mesitwasth epochofinc ssitwasthe itwastheep astheageof stheageoff sitwasthee thebestoft oolishness
heepochofb ochofbelie wastheepoc bestoftime mesitwasth ebestoftim pochofincr

...etc. to 10’s of millions of reads

Traditional all-vs-all comparisons of datasets this size require immense
computational resources.

De Bruijn solution: Construct a graph efficiently




Step 1: “Kmerize” the data

Reads: ’:cbe:ageofwi
Kmers : the
(k=3) éa
:eag
age
geo
eof
ofw
fwi

sthebestof

sth
the
heb
ebe
bes
est
sto
tof

astheageof

ast
sth
the
hea
eag
age
geo

eof

De Bruijn Graphs

worstoftim

wor
ors
rst
sto
tof
oft
fti

tim

.....etc for all reads in the dataset



De Bruijn Graphs

Step?2 Build the graph

Look for k-1 overlaps: given by the reads

Vi the = hea —> eag — age — geo — eof
ast = sth the => hea —> eag —> age —> geo —> eof => ofw —> fwi
sth = the \

heb —> ebe = bes = est = sto — tof
/1 sto — tof

/

oft = fti — tim

N

WOor —> ors — rst

\ «— 1, € </

..... etc for all ‘kmers’ in the dataset



De Bruijn Graphs
step3: simplify the graph

» times

\| _—> be i e v wisdom “

\ _ sl :_,——b of
 Te—_ sl > foolishness -~
) S~ A N f \ . \
SO T age — g > belief —_ '\
1 —— epoch —— * incredulity )

* The final step is to remove redundancy, result in the final De Bruijn Graph
representation of our genome.

* the overlaps between reads are implicit in the graph, so all the millions v.s
millions of comparisons are not required.

 On the downside, information is lost as repetitive sequences are “collapsed”
into a single representation.



De Bruijn Graphs

step4: Create contigs

/ f
/ 2
J —> WOr —

Yy W > foolishness ~
“~—~\:l:\— —p age — //7/ .Ix be“ef 7—\‘\\_ \
\. ~— epoch —— * incredulity ) )

Find the Hamiltonian path or cycle in the De Bruijn
graph. Each path in the simplified De Bruijn graph is
a Hamiltonian path. A Hamiltonian path is a contig.



Common Problems

Spurs: dead-end sequences
Bubbles: divergent paths that then converge

Frayed rope: convergent then divergent paths

Cycles: paths convergent upon themselves

Spurs

Bubbles

Frayed
Rope

Cycles

GTGA | TGAG

ACGT || CGTG
GTGC |»| TGCA 2| GCAT [ | CATT
GTGA |2{ TGAG || GAGT || AGTT 2| GTTA |

ACGT CGTG | TTAC
GTGC TGCAI GCAT | CATT [| ATTA |

GCGT [—>| CGTG TTAG

| GTGC 2| TGCA 2| GCAT |2 CATT 2| ATTA

TAGT |~ AGTG TTAC

GTCA |
AGTC | TCAG




Resolve graph complexity

(before) (after)




Strengths and problems

of De Bruijn approach

Strengths:
* No need to calculate the overlaps

* Size of the final graph is proportional to the genome size
» successfully for very short reads (<50bp)

Problems:

* The main drawback to the de Bruijn approach is the loss
of information caused by decomposing a read into a
path of k-mers.

* require an enormous amount of computer space

 Canonly resolve k long repeat

* Loose connectivity when create the contigs



Strengths and problems
of De Bruijn approach

Sequence 1 Sequence 2 d ‘
(i) AACGTAGT CGTAGTTG
(ii) AACGT || ACGTA | [ CGTAG | |GTAGT CGTAG | |GTAGT || TAGTT | AGTIG
(iii) AACGT pACGTA MCGTAG MGTAGT p TAGTT MAGTTG

Schlebusch, 2012

A48 {E1 {01 seqence1 Pros:correctly links two sequences
CE L4 Ee 4 F 46 seqence2  Without having to compute overlap
score. (above case)
NmE | Cons: two sequences are linked
L without any real overlap. (left case)



De Bruijn Assemblers
Euler: http://nbcr.sdsc.edu/euler/ , Sanger, 454, 2001-2006

Velvet: http://www.ebi.ac.uk/~zerbino/velvet/, small genomes,
Sanger, 454, Solexa, SOLiID, 2007-2009 (very good for small genome)

ABYSS: http://www.bcgsc.ca/platform/bioinfo/software/abyss, large
genome, Solexa, SOLiD, 2008-2011 (for very large genome)

SOAP-denovo: http://soap.genomics.org.cn/soapdenovo.html,
Solexa, 2009

ALLPATH-LG:
http://www.broadinstitute.org/software/allpaths-lg/blog/, large
genome, Solexa, SOLiD, 2011 (very good performance bu require 2
lib of different insert sizes)

IDBA-UD: http://i.cs.hku.hk/~alse/hkubrg/projects/idba ud/, Sanger,
454,Solexa, 2010 (metagenomic, doesn’t rely on coverage to remove
error)




Comparison of Assembly tools

Algorithm Feature

Greedy Assemblers

OLC Assemblers DBG Assemblers

Approaches to graph construction

Implicit
Reads as graph nodes
K-mers as graph nodes

SSAKE, SHARCGS, VCAKE

CABOG, Newbler, Edena
Euler, Velvet, ABySS, SOAP

Simple paths as graph nodes AllPaths

Multiple values of K Euler

Multiple overlap stringencies SHARCGS

Approaches to graph reduction

Filter overlaps CABOG

Greedy contig extension SSAKE, SHARCGS, VCAKE

Collapse simple paths CABOG, Newbler Euler, Velvet, SOAP
Erosion of spurs CABOG, Edena Euler, Velvet, AllPaths, SOAP
Transitive overlap reduction Edena

Bubble smoothing Edena Euler, Velvet, SOAP
Bubble detection AllPaths

Reads separate tangled paths Euler, SOAP

Break at low coverage Velvet, SOAP

Break at high coverage CABOG Euler

High coverage indicates repeat CABOG Velvet

Special use of long reads Shorty Velvet

Graph partitions

Partition by K-mers ABySS

Partition by scaffolds AllPaths

Miller, genomics, 2010, 95(6):315-27



Comparison of the effect of various
coverage depths on average contig length

s SSAKE w o o= Euler-sr
-« + Velvet — = ABYSS
- = = SOAPdenovo

4.5
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Read length =35

Lin Y et al. Bioinformatics 2011;27:2031-2037
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Couple issues

* Try different assemblers and compare their
results.

* Need a big fat memory computer (from 16GB
to 1TB).

* Running time is long: from several hours to
several days.



Running time

Runtime (s)

Bench.Seq E.coli C.ele H.sap-2 H.sap-3
(Length: bp) 4.6M) (2095M) (50.3M) (100.5M)

SSAKE 2,776 - - -

VCAKE 1,672 16,742 - .

Euler-sr 1,689 11,961 29,622 —--

SE Edena 895 8,450 17,043 ---
Velvet 205 1,003 2,786 6,098
ABySS 265 1,300 3,307 6,608
SOAPdenovo 62 253 560 1,029

SSAKE 9,163 --- - -

Euler-sr 1,455 15,068 ——- -

PE Velvet 229 1,351 55,581 -
ABySS 458 3,081 9,199 21,683

SOAPdenovo 78 374 889 2,257

Lin Y et al. Bioinformatics 2011;27:2031-2037
‘" denotes runtime is too long (>10 days) to get assembly results



RAM used

RAM (MB)
Bench.Seq E.coli C.ele H.sap-2 H.sap-3
(Length: bp) 4.6M) (209M) (50.3M) (100.5M)
SSAKE 9,933 - -—- -
VCAKE 4,099 17,408 --- -
Euler-sr 1,536 7,065 13,312 -—-
SE Edena 1,741 7,557 30,720 -—-
Velvet 1,229 4,045 9,830 22528
ABySS 1,126 3,993 8,909 18432
SOAPdenovo 935 2,867 8,089 18227
SSAKE 16,384 - --- ---
Euler-sr 1,638 7,578 --- ---
PE Velvet 1,331 5,324 30,720 -
ABySS 950 4,505 9,830 18,432
SOAPdenovo 1,638 5,939 10,342 19,456

‘~” denotes the RAM of computer is not

enough

Lin Y et al. Bioinformatics 2011;27:2031-2037



Whole genome sequencing

 De Novo whole genome sequencing

 Mapping assembly (Reference-guided
assembly) (Resequencing)



