Next-generation Sequencing

Lecture 14 Introduction of metagenomics

What is Metagenomics? Meta + Genomics

- Metagenomics (Environmental Genomics, Ecogenomics or Community Genomics) is the study of genomes recovered from environmental samples without the need for culturing them.
- Key words: Microbiology, Microbiome, Genomes, Genomics, High-throughput sequencing, Biodiversity, Microbial ecology, PCR, Cloning, 16S rRNA, 18S rRNA, Bioinformatics.

Human gut, mouse, upper respiratory tract, skin, urogenital tract, and etc.

The get microbial community has been called "a forgetter or gent" because of its role in facilitating human health—a role that is still and the start of the action of the start devices an unstart of the start of the devices and start of the start of th

Soil, desert, ice layer, glacial, oil, and etc.

Sea surface, fish gut, Coral, Sponge, hostsymbiosis, plankton, and etc.

Animal gut, forest, grassland, and etc.

Why is Metagenomics Important?

> All reasons lead to more knowledge.

- Organisms can be studied directly in their environments bypassing the need to isolate each species
- There are significant advantages for viral metagenomics, because of difficulties cultivating the appropriate host
- Genomic information has advanced research in a diverse array of fields, including forensic science and biomedical research

Why Do METAGENOMICS?

Jane Philips in University of Minnesota

Sampling in Metagenomics some issues for library preparation

> Take a sample off of the environment

Isolate and amplify DNA/mRNA

Biggest challenge: environmental DNA extraction

- Physical breaking cell wall, Beadbeater (shaking)
- Chemical breaking cell wall, enzyme (digesting)

How to do analysis for metagenomics

Path 1: PCR+sequencing

> Goals

- Identify species (by identifying species-specific genes, such as 16S rRNA)
- Richness & diversity
- Comparison

> Why 16S rRNA

- conserved within a species, and generally different between species.
- All bacteria have 16s rRNA.
- Database

Limitations

- PCR for the abundance
- Only for known species
- No gene annotation

16S & 18S rRNA

Schematic representation of the 16S rRNA gene. Location of variable (purple) and conserved (brown) regions in a canonical bacterial 16S rRNA. The black region is invariable in all bacteria.

Sequencing driven metagenomics

- Sanger sequencing
- 454 pyrosequencing
- Illumina/Miseq sequencing
- Single cell sequencing: Multiple displacement amplification (MDA) of genomic DNA

PCR for 16S rRNA amplicon

Justin et al., 2012

Nature Reviews | Genetics

Barcoded PCR & sequencing for amplicon in 454

MID: Multiplex Identifiers, DNA barcode.

Key: sequencing key "TCAG" for bidirectional or unidirectional Sequencing

Barcoded PCR & sequencing for amplicon in Illumina

Taxonomic identification of individual sequences. Note that different related sequences can be identified to different levels.

Fichot et al., 2013

What is chimera

Chimera filtering tool

ChimeraSlayer

- Reference based.
- Two ends' alignment and scoring.
- ➢ USEARCH (UCHIME)
 - Reference based (uchime_ref).
 - De novo chimera checking (uchime_denovo). 3-way alignment of a query sequence with two parent sequences.

➢ Perseus

Data analysis

- 1. OTU table
- 2. Biodiversity
- 3. Phylogenetics
- 4. Taxonomy
- 5. PCA, etc.

Terms you should know

- **OTU**: operational taxonomic unit. Taxonomic level of sampling selected by the user to be used in a study, such as individuals, populations, species, genera, or bacterial strains.
- RDP: Ribosomal Database Project. RDP provides quality-controlled, aligned and annotated Bacterial and Archaeal 16S rRNA sequences, and Fungal 28S rRNA sequences, and a suite of analysis tools to the scientific community.

OTU clustering

- **QIIME**: Next-generation reads are clustered into OTUs. This requires quality filtering, dereplication, discarding singletons (optional), and finally clustering into OTUs, typically at a 97% identity threshold.
- Mothur: Alignment based OTUs. align.seqs().

OTU identity assessed by USEARCH

Accuracy measure	Summary
Sequence quality Are OTUs accurate reconstructions of biological sequences?	Most USEARCH OTUs are >=99% identical to a biological sequence. Most QIIME, mothur and AmpliconNoise OTUs are >3% diverged from a biological sequence. Roughly half are chimeric.
Diversity Does the number of OTUs correspond to the number of species?	USEARCH generated from 0.8 to 1.0 OTUs per <u>detectable species</u> . Mothur and AmpliconNoised produced 2.3x to 6.7x more OTUs than species. QIIME produced thousands of OTUs, far more than the number of species.

Distribution of Phylum for yak and pika

Clustering results for yak and pika

Biodiversity

 Alpha & Beta biodiversity: the total species diversity in a landscape (gamma diversity) is determined by two different things, the mean species diversity in sites or habitats at a more local scale (alpha diversity) and the differentiation among those habitats (beta diversity).

Yuichi et al., 2014

Richness and rarefaction curve

- Richness *R* simply quantifies how many different types the dataset of interest contains.
- Rarefaction curves are used to determine whether sampling depth was sufficient to accurately characterize the bacterial community being studied

Higuti et al., 2009

Database available

- RDP 16S database
- SILVA rRNA database
- Greengenes 16S database
- EzTaxon-e 16S database
- UNITE ITS database

Tools

- QIIME http://giime.org/install/virtual_box.html
- Mothur http://www.mothur.org/
- **RDP classifier** <u>https://rdp.cme.msu.edu/classifier/</u>
- MEGAN <u>http://ab.inf.uni-tuebingen.de/software/megan/</u>
- MG-RAST http://metagenomics.anl.gov/
- CARMA

http://www.cebitec.uni-bielefeld.de/brf/carma/ carma.html

• IMG/M <u>http://img.jgi.doe.gov/cgi-bin/m/main.cgi</u>

QIIME pipeline

- ✓ Demultiplexing and quality filtering sequences
- ✓ Chimera filtering.
- ✓ OTU picking
 - Pick OTUs based on sequence similarity within the reads
 - Pick a representative sequence for each OTU
 - Assign taxonomy to OTU representative sequences
 - Align OTU representative sequences
 - Make the OTU table

✓ Run diversity analyses for alpha and beta diversity

Whole Genome Shotgun Sequencing for Metagenomics

One genome

Shotgun Sequencing for Metagenomics

Goals

- Key genes for nutrition metabolism, etc.
- Novel genes
- Novel species

Difficulties

- Genome assembly
- Gene annotation

Solutions

• PE

Limitations

- Overestimation
- Species with low abundance
- Unknown species
- Cost

Metagenome assembly

- Velvet http://www.ebi.ac.uk/~zerbino/velvet/
- SOAP denovo http://soap.genomics.org.cn/soapdenovo.html
- Celera <u>http://www.cbcb.umd.edu/research/</u> <u>assembly.shtml#software</u>
- Metasim

http://ab.inf.uni-tuebingen.de/software/ metasim/welcome.html#Download

• Euler http://nbcr.sdsc.edu/euler/JAZZ

Metagenome annotation tools

- MG-RAST
- IMG/M
- CAMERA
- MEGAN
- RAMMCAP

http://weizhong-lab.ucsd.edu/rammcap/cgi-bin/ rammcap.cgi

• METAGENE http://metagene.cb.k.u-tokyo.ac.jp/

base pairs85.24 Tbp# of sequences678.81 billion# of public metagenomes29,927

MG-RAST (the Metagenomics RAST) server is an automated analysis platform for metagenomes providing quantitative insights into microbial populations based on sequence data.

PUBLIC METAGENOMES

group by project

Current table counts

metagenomes	projects	biomes	features	materials	altitudes	depths	locations	ph's	countries	temperatures	pi's
29927	1093	185	258	176	5	169	429	1243	298	115	8

The EBI Metagenomics service is an automated pipeline for the analysis and archiving of metagenomic data that aims to provide insights into the phylogenetic diversity as well as the functional and metabolic potential of a sample.

ଟ NCBI Sequence Read Archive

The Sequence Read Archive accepts all Next-Generation sequencing data.

(III) Sequence Read Archive

Main Browse Search Download Submit Documentation Software Trace Archive Trace Assembly Trace Home Trace BLAST

Submissions Tracking Preferences Getting started Help! FAQ

SRA Submissions Tracking and Management

The Sequence Read Archive (SRA) stores raw sequence data and alignments of "next-generation" sequencing technologies including 454, IonTorrent, Illumina, SOLiD, Helicos, PacBio and Complete Genomics. Aligned sequences may be submitted in BAM format.

First time users - please start here!

Choose a login route:

Route	Users
NIH	NIH intramural scientists
OR NOBI PDA	NCBI Primary Data Archive Submitters

Submitting assembled metagenomic contigs to WGS

Contigs that have been assembled from raw reads can be submitted as a WGS project.

Case study (1)

- Metagenomics in red palm weevil.
- Analysis pipeline.
- Species distribution.
- Genome assembly.
- Nutrition metabolism.

Metagenomics in red palm weevil

RPW is living inside the trunk of date palm.

Egg, larva, pupa, and adult.

World distribution of RPW

From Red Palm Weevil Home

Gut of RPW

 $1 \mathrm{cm}$

Temperature in Saudi Arabia

Months over 2010

Summary of micro-organism							
	Larva Mar.	Larva July	Larva Nov.	Adult July			
	L-3	L-7	L-11	A-S			
Bacteria	72.69%	97.06%	94.86%	15.18%			
Archaea	0.00%	0.04%	0.05%	0.00%			
Eukaryota	27.11%	2.89%	5.08%	84.52%			
Viruses	0.20%	0.02%	0.01%	0.30%			

Clustering in phylum level

Top 10 species

L-11		L-7		L-3		A-S	
Species	%	Species	%	Species	%	Species	%
Klebsiella pneumoniae	0.15	Lactococcus lactis	0.26	Klebsiella pneumoniae	0.18	Lactococcus lactis	0.3
Mesoplasma florum	0.1	Desulfovibrio desulfuricans	0.11	Citrobacter koseri	0.15	A c i n e t o b a c t e r baumannii	0.1
Citrobacter koseri	0.08	Bifidobacterium bifidum	0.04	Mesoplasma florum	0.1	Acidovorax avenae	0.07
Enterobacter cloacae	0.06	Bifidobacterium longum	0.03	Enterobacter cloacae	0.07	Buchnera aphidicola	0.05
Lactobacillus fermentum	0.04	Rhodobacter capsulatus	0.03	Salmonella enterica	0.05	Pseudomonas mendocina	0.04
Mycoplasma mycoides	0.04	Bacteroides helcogenes	0.02	Mycoplasma mycoides	0.04	Pseudomonas aeruginosa	0.03
Salmonella enterica	0.03	Paracoccus denitrificans	0.02	Pantoea sp. At-9b	0.03	Enterobacter cloacae	0.03
Lactobacillus salivarius	0.03	B i f i d o b a c t e r i u m adolescentis	0.02	Citrobacter rodentium	0.03	Citrobacter koseri	0.03
Pantoea sp. At-9b	0.02	Bacteroides xylanisolvens	0.02	Escherichia coli	0.03	H e r b a s p i r i l l u m seropedicae	0.03
Escherichia coli	0.02	Citrobacter koseri	0.02	Klebsiella oxytoca	0.02	Enterococcus faecalis	0.02

Compared to others

Nutrition metabolism

CAZY: Carbohydrate-Active enZYmes Database

Whole genome assembly

Circle a, the regions with or without mapped reads are colored blue or white, respectively.

Circle b, genes or intergenic regions are colored green or red, respectively.

Circles c, d, e, and f: the distribution of mapped read, GC content of the mapped reads, GC content of the references, and SNPs distribution.

The window size in Circles c, d, e, and f is1kb.

Klebsiella pneumoniae 342

Case study (2)

Fig. 1. (**A**) A surgically created fistula (arrow) sealed with a flexible cannula was used to study the degradation of switchgrass within the rumen. (**B**) Switchgrass before rumen incubation. (**C**) Nylon bags filled with switchgrass before insertion into the rumen. (**D**) Switchgrass after 72 hours of rumen incubation.

Matthias et al., 2011

Draft genomes

Genome Bin	Genome Size (Mb)	Phylogenetic Order	Estimated Complete- ness
AFa	2.87	Spirochaetales	92.98%
AMa	2.21	Spirochaetales	91.23%
Ala	2.53	Clostridiales	90.10%
AGa	3.08	Bacteroidales	89.77%
AN	2.02	Clostridiales	78.50%
AJ	2.24	Bacteroidales	75.96%
AC2a	2.07	Bacteroidales	75.96%
AWa	2.02	Clostridiales	75.77%
AH	2.52	Bacteroidales	75.45%
AQ	1.91	Bacteroidales	71.36%
AS1a	1.75	Clostridiales	70.99%
APb	2.41	Clostridiales	64.85%
BOa	1.67	Clostridiales	64.16%
ADa	2.99	Myxococcales	62.13%
ATa	1.87	Clostridiales	60.41%

Case Study (3): termite gut

Falk et al., 2007

Metatranscriptomics

- The extraction and analysis of metagenomic mRNA (the metatranscriptome) provides information on the regulation and expression profiles of complex communities.
- Metatranscriptomcs studies have made use of direct highthroughput cDNA sequencing to provide whole-genome expression and quantification of a microbial community.

Characteristic	Application
No prior knowledge of the genome sequence is required	 Discover novel transcripts and genetic features (gene mining). Annotate functional domains in the genome.
Accurate mapping	 Mapping of sequences with an aligner is more precise than hybridization in solution. Transcription can be studied at a much higher resolution and specificity without interference from non-specific cross-hybridization.
Dynamic range	 Greater dynamic range than fluorescence-based measurements. Better discrimination at high and low levels of expression.

Paleomics

- Paleome: the genome of an extinct species.
- A sedimentary genetic record of past microbial communities.

Thank you