Next-generation Sequencing



Applications of RNA-seq

Gene expression
— Expression of individual genes/loci

— Quantitatively discriminate isoforms using
junction reads and coverage of individual exons,
introns, etc.

Annotation

— New features of the transcriptome: genes, exons,
splicing, ncRNAs

SNP
Fusion gene detection



Alternative Splicing (AS)

 Due to AS, the gene’s exons are pieced together in
multiple ways forming mRNA during RNA processing.
* 35% - 60% of human genes show AS.
* Some genes have a huge number of isoforms
(slo >500, neurexin >1000, DSCAM > 38000)
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RNA-seq for AS analysis

* Transcriptome assembly: perform de novo
assembly of transcripts or a reference assembly
to find different isoforms.

* |dentify new AS sites or Alternative expression:
identify isoform expression differences between
two or more conditions. Tools: Cuffdiff, ALEXA-
seq, MISO, SplicingCompass, Flux Capacitor,
JuncBASE, DEXSeq, MATS, SpliceR, FineSplice,
ARH-seq, etc.



Splicing site discovery pipelines
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Splicing site discovery
gapped mapping
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Alternative Splicing Events

Skipped exon (SE)

Alternative 5’ splice
site (ASSS)

Alternative 3’ splice
site (A3SS)

Mutually exclusive
exons (MXE)

Retained intron (RI)

Il Constitutive exon L] Alternatively spliced exon

http://rnaseg-mats.sourceforge.net/




Retained Intron

Including Reads

Skipping Reads
I |

BRI




Rl between WT and MU
I 3 S T T

WT has this intron, but MU skip this

intron

WT has both including and skipping 50 50 50 2
the intron events, but MU has only

including intron event

WT has both including and skipping 50 50 2 50
the intron events, but MU has only

skipping intron event

Both WT and TGH have more 100 20 50 20
including reads than skipping reads,

but WT has larger fold change.

50 2 50 2
50 50 50 50



A3SS

TGH has reads for both
including and skipping
3’ site
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TGH has more reads WT_IC WT_SC TGH_IC TGH_SC
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SE

TGH does not have many
reads for including than

skipping the exon
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TGH has more reads WT_IC WT_SC TGH_IC TGH_SC
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non-coding RNA

Messenger RNA (mRNA) is the RNA that carries information
from DNA to the ribosome. The coding sequence of the
MRNA determines the amino acid sequence in the protein
that is produced.

Sequencing of the human genome showed that there are
only ~20,000 protein-coding genes, representing <2% of the
total genomic sequence .

Many RNAs do not code for protein and these so-called
non-coding RNAs ("ncRNA") can be encoded by their own
genes (RNA genes), but can also derive from mRNA introns.

Non coding RNA -- Highly abundant and functionally
important



Types of non-coding RNA

transfer RNA (tRNA) and ribosomal RNA
(rRNA),

snRNAs- Small nuclear ribonucleic acid

snoRNAs-Small nucleolar RNA

Small RNAs (21-26nt): microRNAs, siRNAs,
stRNAs, tony noncoding RNAs etc.

long ncRNAs-Long non coding RNAs
exRNAs-Extracellular RNA



MiRNAs are small single-stranded RNA (22 nt)
molecules that can bind to complementary mRNA
sequences MiRNA

miRNA-protein
complex: RISC

RISC = RNA-induced Silencing Complex

MRNA degraded Translation blocked



miRNASs have diverse functions

in animals and plants
 Development:

e Brain development (miR-430)

 Muscle (miR-1)

 Heart development (miR-1)

* neuronal development (miR-124)
 Metabolism:

* misregulation of miRNA causes metabolic disorders
* Immuno responses:

* miRNA function as positive and negative regulator.
* Cancer:

* miRNAs function as oncogenes or tumour

suppressors

e Viral infection:

e suppressor or enhancer
e Stress responses (abiotic and biotic stress)



Model for miRNA biogenesis

~ )]

J Drosha

pre-miRNA shRNA
(60—100-nt stem—loop 1 (50-70-nt stem—loop
with ~2-nt 3" overhang) uU with ~2-nt 3’ overhang)

Export \ Exp5 /

) - _ i' Nucleus

‘ NPC Cytoplasm

pre-miRNA O . 6 Q shRNA

Dicing l Dicer

mIRNA duplex (~22-nt) ‘} ” {r SIRNA duplex (~22-nt)
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Drosha processes pri-miRNA in nucleus to pre-miRNAs of ,70-nt, which are exported
by Exp5. Upon export, Dicer participates in the second step (dicing) to produce
miRNA duplexes.



Structure of mMiRNA/miRNA* and siRNA duplex
microRNAs SiRNAs

pri-miRNAs T T T ::)

dsRNAs

miRNA hairpin

’ ’ 5- OH-3"
3’ -OH pP-5’ 3°-0OH D=5

Cloning and sequencing small RNAs established that they are
generated in a duplex form

The duplex has 2 nt overhang at 3" end, 5  phosphate at each strand.
3’ OH for miRNAs and most of siRNAs in many organisms but not in
plants,

mMiRNA dupelx: generated from imperfect match stem loop transcripts
by pol Il or pol Il

SiRNA duplex: near perfect match dsRNAs generated from transgene,
transposon, repeated-DNA or exogenous dsRNA



Extract sufficient mRNA from total
using either poly-A selection or
depletion of rRNA (RiboMinus).

Non-poly(A) RNA can yield important
noncoding RNA gene discovery

reads are aligned with the
reference genome

Wang, Gerstein, Snyser, 2009
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mMiRNA-seq Data analysis

Preprocessing

Abundance analysis

Imprecision analysis

MiRNA trimming and tailing analysis



Preprocessing

Raw read
data

\ 4

Remove adapter and group reads with barbodes

discard reads with length <=12 and >=30

v

discard reads with low quality

v

Remove reads mapped to t/r/'sn/sno RNAs

A 4

Remained reads
for downstream
analysis

QC with phred scores

Need gene annotations



Preprocessing

An example of raw miRNA-seq data filtering

barcode

f_JL_\

TGACAGAAGAGAGTGAGCACCAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
TGACAGAAGAGAGAGAGCAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
TGCCTGGCCAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA

TCGGACCAGGCTTCATTCCCCAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
—

N—

~—

MiRNA reads
Adapter



Remove reads mapped to t/r/sn/sno
RNAsS

RNA 1 tRNA gene
' sene snRNA gene

— —l— N —

AACGTT
CTAACG

Need to map reads to reference genome, and identify t/r/sn/sno
RNA genes with gene annotation information (GFF files).



A typical results after preprocessing
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Figure 1: Typical length distribution of remained miRNA-seq reads



Which libraries are good?
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Abundance analysis

Pipeline of miRNA differential expression analysis

Remained reads
mapped to hairpin
sequences

spike-in counts

\4

MiRNA read counts

Total read counts

! 2
normalization

Gene read counts

\4

Differential expression algorithm

For example, edgeR.

Peak read counts




miRNA hairpins as references

Use miRNA hairpin sequences as the reference sequences.
Allow at most 1 mismatch.

Get hairpin sequences from miRBase: the microRNA database.
http://www.mirbase.org/

miR158a* miR158a

eeeeeeee
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ACACGTCATCTCTGTGCTTCTTTGTCTACAATTTTGGAAARAAAGTGATGACGCCATTGCTCTTTCCCAAATGTAGACAAAGCAATACCGTGATGATGTCGTNNNNNNNNNNNN] 4




Differential expression analysis
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Figure 2: miRNA abundance was down regulated by TOUGH in Arabidopsis

Gene read counts was used as the normalization method.

Ren, Guodong, et al. "Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis.” PNAS 109.31 (2012): 12817-12821.



miRNA imprecision analysis

Drosha Dicer

\
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Inaccurate Processing of the 5’ end of a miRNA are cleaved by Drosha and Dicer.
In this duplex, the mature miRNA (red) is paired to a partially complementary
mMiRNA* (blue).

Seitz et al. Current Biology (2008): 147-151.



miRNA imprecision analysis

Pipeline of miRNA inaccurate analysis

Map preprocessed
reads hairpin and
allow 1 mismatch miRNA annotation

A\ 4

Identify accurately and
inaccurately mapped reads

Calculate ratio between
accurately and

inaccurately mapped
reads




miRNA imprecision analysis

80 b

miRNA sequence data shows inaccurate of ath-miR161



Typical numbers of imprecision-
reads 1n a mutant of Arabidopsis

ID
ath-MIR166a
ath-MIR166b
ath-MIR166¢
ath-MIR166d
ath-MIR166g
ath-MIR166f
ath-MIR166e
ath-MIR165a
ath-MIR165b
ath-MIR158a
ath-MIR319a
ath-MIR319b
ath-MIR159a
ath-MIR396a
ath-MIR159b
ath-MIR161
ath-MIR319c
ath-MIR162b
ath-MIR162a
ath-MIR403
ath-MIR858
ath-MIR168a
ath-MIR396b

Precision-reads
244333
229539
229495
229498
229417
229223
229216
95220
94125
64164
48540
48372
18056
1805
7576
6139
4824
4501
4509
3100
2638
2528
2228

imprecision-reads
821
710
647
643
646
645
648
1176
524
268
412
446
409
10737
373
257
329
178
76
46
54
103
55

Total-reads
245154
230249
230142
230141
230063
229868
229864
96396
94649
64432
48952
48818
18465
12542
7949
6396
5153
4679
4585
3146
2692
2631
2283

ratio
0.003348915
0.003083618
0.002811308
0.002793939
0.002807927
0.002805958
0.002819058
0.012199676
0.005536244
0.004159424
0.008416408
0.009135974
0.022150014
0.856083559
0.046924141
0.040181363
0.063846303
0.038042317
0.016575791
0.014621742
0.020059435
0.039148613
0.024091108



miRNA trimming and tailing

AR
miRNA
Various mechanisms have now been l
identified that regulate miRNA stability
and that diversify miRNA sequences to (AGOD
create distinct isoforms. The production of "
different isoforms of individual miRNAs in Highly complementary
specific cells and tissues may have broader target mRNA
implications for miRNA-mediated gene / \
expression control. I/\INN7> —_f - /1/
| 'I"ailing 3'-to-S'exénucleolytic

\/t:i mming

Small RNA turnover

the addition of adenosine or uracil to the miRNA ('tailing')
the 3'-to-5" exonucleolytic resection of the miRNA 3’ end (‘trimming’)

Ameres, and. Zamore. Nature Reviews Molecular Cell Biology 14.8 (2013): 475-488.



Trimming and tailing analysis pipeline

Map preprocessed reads hairpin and
allow 1 mismatch

mapped

l Unmapped with
' length >12

- Mapped or not

A

— -

l

Trim one nucleotide

l

Map to hairpin =

Accurately mapped reads, saved for
downstream analysis




MIiRNA trimming and tailing

100 bp
| | |

TATCTGATTGAGCCGCGCCAATATC Te-_

miRNA

TGS TEGAT:

An example for trimming miRNA reads



MIiRNA trimming and tailing

20 bp 40 bp
| | |

AACTGACAGAAGAGAGTGAGCACATCA

o=

miRNA

R e

[ T R e e e e B o e e e I o I i o I o W o I I

TAC

An example for miRNA tailing (some reads have tails)



MiRNA trimming and taiIi
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An example of reads that have both trimming and tailing



Global changes of miRNA profiles in mutants

MiRNA length distribution
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Wang X, Zhang S, Dou Y, Zhang C, Chen X, et al. (2015) Synergistic and Independent Actions of Multiple Terminal Nucleotidyl Transferases in the
3’ Tailing of Small RNAs in Arabidopsis. PLoS Genet 11(4): e1005091. doi:10.1371/journal.pgen.1005091
http://127.0.0.1:8081/plosgenetics/article?id=info:doi/10.1371/journal.pgen.1005091




MIiRNA trimming and tailing
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100% 100%
€ =
3 80% 3 80%
O O —
3 G 3 nG
S 60% . = 6o
g G o C
Z 40% " g 40% ”
8 "A 3 "A
) )
0 20% o 20%

1 2 3 4 5 6 7 Tail length (nt) 1 2 3 4 5 6 7 Tail length (nt)

Tail length distribution and nucleotide frequencies in the tails
of miR166a. The figure shows there was a shift toward
shorter tails in the hen1-8 heso1-1 mutant as compared to the
hen1-8 mutant.

Zhao, et al Current Biology (2012): 689-694.



MIiRNA trimming and tailing analysis

miR159a
Col . heni-8
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The distribution of trimmed and tailed reads of miR159a
in different lines

Zhao, et al Current Biology (2012): 689-694.



Types of non-coding RNA

transfer RNA (tRNA) and ribosomal RNA
(rRNA),

snoRNAs-Small nucleolar RNA
microRNAs

SIRNAs

snRNAs- Small nuclear ribonucleic acid
exRNAs-Extracellular RNA

long ncRNAs-Long non coding RNAs



Long non coding RNAs

Long non-coding RNAs (long ncRNAs, IncRNA) are non-
protein coding transcripts longer than 200 nucleotides.

Non-coding RNAs play very important roles in regulation

Recently, Long non-coding RNAs (IncRNA), longer than
200 nucleotides, have been discovered.

LncRNAs have gained widespread attention as a
potentially new and crucial layer of biological regulation

Many IncRNA act by activating or repression the
transcriptional activity of other genes.



Location of IncRNA 1n the genome.

LncRNASs can be categorized

according to their proximity " —wmmiramlp———
to protein coding genes in

Antisense
the genome, using this —— ———

criteria IncRNAs are e
idirectiona
generally placed into five . <io0obp —

categories: -

Intergenic

—mlD +




long non-coding RNA

* RNA-seq is a useful tool for discovery of new
IncRNAs

* Many new IncRNAs are discovered by RNA-
seq, but most them are in animal species.



Pipeline

RNA-seq reads

A 4

Reference genome based mapping

Tophat

!

Assembled transcripts
Cufflincks

!

Compare with annotated genes

Cuffcompare

\ 4

New transcripts

}

!

I

I

!

I

Blast
against NR

Conservation

Reads number

ORF length

9

New IncRNA

Subsequence
frequency




An example for maize

RNA-seq reads from B73 maize line after
submerging

Total 2775 new transcripts are found

The number of high quality new transcripts is
228. They appear in all three replicates and have
more than 100 reads in each replicate

There are 29 candidates of intergenic long non-
coding RNAs



An example for maize

* These 29 candidates of intergenic IncRNAs
— No homology to known protein coding genes
— No discernible protein motif
— No long open reading frame

— Are less abundant (number of average reads =
200, which is smaller than other coding genes)

— Contain fewer exons (most just have one exon).



INncCRNA Candidate 1

e Chr8
e Near GRMZM2G033230

* Length: 473
e Reads number: 114

1]




Candidate 2

e Chr1l

* Near GRMZM2G473506
* Length: 560

* Reads number: 127

nnnnnn




Applications of RNA-seq

Gene expression
— Expression of individual genes/loci

— Quantitatively discriminate isoforms using
junction reads and coverage of individual exons,
introns, etc.

Annotation

— New features of the transcriptome: genes, exons,
splicing, ncRNAs (next class)

SNP
Fusion gene detection



Other applications of mMRNA-seq:
gene fusion

 The unmapped short reads can then

pre-mRNA r B
(Gene 1),

| — be further analyzed to determine
whether they match an exon-exon
junction where the exons come
mRNA

from different genes.
Gene ¢ An alternative approach is using
pair-end reads, when potentially a

End-paired .
<hort reads i large number of paired reads would
‘ ' map each end to a different exon,

N giving better coverage of these
_— ‘ ' events.
a)Trans. .| . b)Cis. * Novel combinations genes can be
identified.

Acknowledgement: Wiki — mRNA-seq



Finding fusion genes

* A case: RNA-seq data for the leukemia K562 cell
line
— ~15 000 candidate fusion-genes found
— ~85% candidate fusion-genes are known paralogs or
have no protein product!!!
— 15 candidate fusion-genes are found after additional

filtering of candidate fusion-genes where the known
BCR-ABL is number one candidate

* Filtering of candidate fusion-genes is highly
necessary in order to reduce the large number of
candidate fusion-genes (from ten of thousands to

tens)!



