Next-generation Sequencing



Alignment

GCACTTCACAAATTAATGACCATGAGCTCGTTTTTGATAAACTCCAACTACATCGAGCCC

CEErrrrrrrrr e
ACCATGAGCTCGATTTTGATAAA

GOAL: to efficiently find the true location of each read from a
potentially large quantity of reference data while distinguishing
between technical sequencing errors and true genetic variation
within the sample.

1. Efficient

True location

3. Distinguishing between technical sequencing errors and true
genetic variation

N



Short-Read Alignment Tools with indexing

* Indexing Reads with Hash Tables
— ZOOM: uses spaced seeds algorithm [Lin et al 2008]

— RMAP: simpler spaced seeds algorithm [Smith et al
2008]

— SHRIMP: employs a combination of spaced seeds and
the Smith-Waterman

— MAQ [Li et al 2008Db]
— Eland (commercial Solexa Pipeline)
* Indexing Reference with Hash Tables
— SOAPvV1 [Li et al 2008]
* Indexing Reference with Sux Array/Burrows-Wheeler
— Bowtie [Langmead et al 2009]
— BWA
— SOAPV2



Output: SAM format

A SAM file consists of two parts:
* Header

* contains meta data (source of the reads,
reference genome, aligner, etc.)

* All header lines start with “@” .

* Header fields have standardized two-letter codes
for easy parsing of the information.

* Most current tools omit and/or ignore the header.
* Alignment section

* A tab-separated table with at least 11 columns

* Each line describes one alignment

http://samtools.sourceforge.net/SAM1.pdf



Homework 4

Download data from course website
— Reference genome and 50 reads

Download Bowtie and install it
ndexing and alignment

~ind uniquely aligned reads
— Manually look for the uniquely aligned reads

— If using perl, you may use “hash” to determine the
uniquely aligned reads.
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Cells: Building Blocks of Life

Extraoellula-
Matm

ccccc

4,
8~  Extracellular

e Cells are the smallest form of life—the functional and
structural units of all living things.



Cells: Building Blocks of Life

* Approximately how many cells make up human
body?

a1

1100

11000

(1100,000

11,000,000 (1 million)

11,000,000,000,000,000 (1 trillion, 10*?)

x1100,000,000,000,000,000 (100 trillion, 10%)




Cells: Building Blocks of Life

Extracellular

- Extracellular

e Each cell has a nucleus which contains genetic material, that
is, DNA molecules.



DNA: “Blueprints” for a cell

Gel
Nucleus

Chromosomes

National Cancar Institute

Each human cell has identical
genetic information — a total of
3 billion DNA base pairs,
including 25,000 genes

GAATTCTCTTTGGTATCCAAT GAAGAAATCGAATCCATACCCATAGCTATAAAAAACAT
TTCAGGAGAAAATAAGACCGAAGCTGCTCAATTAGGCGCAATTGATTCGTTTCAAAAAT
GTGAAACTTGCCAGCTTACTTCGGCATGTCCTGGTCATTTTGGAAAATTTCATCTTACT
CAACCATTATTTAAAGTCGCATTTAAAAAACTTGTT GAAAATATTTTTAAATATACTTG
TTCTTTCTGTGGTGCTTTACAAAATCTTGAACTTCTGGAATTGAT CAAGCAGATAGACG
AACGAAATACTGGAATAACAGTTAAAGATCGTGCTGCTTTTAAAAAAATTTTAGAAGCT
ACCAAACAAAGCAAATTCAAGTGTATTGCACCTAATTGCCAAAAACAAGTCTCTCCTTT
ACAATATTCGAAAAATAATAACTTTATATATAATT CGGGTACTACAAAGGGTATAGTTT
TGGATAACAGGCATGTGTTTAATATCTTACAAAATCTTCCACAAACGTTTAAATTATTG
TTAACCCCTTCGAATGCT CATCAAATCGTATCTCCCGAAAATGTCTTTTATGCTAATAG
TATCTTACTTCCACCACATAATCTACGAACTATCAATGTTTATGATGGTCAGGTTACGA
GTTTGTTAACAAGTGATTTGAATCTGATAAT CCGAAGAGTTGCTAATAAT GAGACAAAT
GCAAAAATACAAAAAATCTTGGATTCTAT CGATAACAGCCGAGGTGCCAATCCATATGC
TACAAATAAAAAGCTTACTTTGGATACTTTGACAGGT GGACACTCAAAAGAATCTTATT
TGCGAAGTTATATTAATGGCAAACGTATT CCTGAGACT GCCAGAGCT GTAATCGAACCC
TCTATGAATAAAACTGGCTTTATTGAAGTACCATCTTACATTTTAAACAAGTTAAGAGA
TGTTGTCTTTTATAATCACGT TACGAAAGATAACATACTCAAAAGTCTTCAAAACGAAC
AAGCTTTTCTAACATATATCAAAAGTGATCATAATTCTGAAAATCCTTATATGGTTTAT
GATTTAGCACAGAAGAAT GGATATTTAACCTTGGCTCCTAATTTCGGTGATATTTTCGA
AAAAAGCGAAAGAGGAAGGTGGTTTTGTAACTATTT GCAGACATCCATCTATCTGGTTAA
CTAATATCCAATCTGGTATAATAAAAAGAT CAGAAGGGTTTACTATTAACATCCCAACC
ACAATTTGCACATCTTTT ATGACAATATATTCTTT
CAAATCCCCATGTGCCAATCTCGAACAAGCTTTGATTATGAACTCACGAAATCTCTTCA
AAAATTCTATAACAAGCAATCCAATGTTCGGCTTGGTCCAAGAT CAAATACCAGCCTTG
AATAAGTTATATAGACGACAAAATTATACATATAACGATGCGTTGGTGATTTTAGGACA
ATTCGGATTTCTGTTAACACCT GGAAAAGATAATTATACCGGAAAAGATATACTTTCTT
GTGTATTCCCAAAACATTATACACTCAAAGGAATTGT TGAAAATGGCGAACTTATTTTG
GAGAATTTTACAAATAAACTCGTTTCCGCAAATTCCTCAAAGTCCATCTTTGGGCATCT
TGTTTTATTTTATGGACAAGAGTATGGTTTGACTATATTGGATACAATGCGAGATATTG
TTCAAAATTTTATTACACATTTTGGTTTCAGT GTAAAAAT CCGAGATAT GATCCCAAGC
CCAAAAATTTTGGATATT CTAGAAAAGAT CGTAGACCAAGAAGT GGATAAAATTGATAA
ACAAACAAAACTTCTATATGACGATATCGAACAAGGTAAGGTTATAATCAACTCTTATG
ATGATATTTCTGAGTTCAGATTAAAAAATGTGGCTATTAT GAAAAAGAAACTAGAAAGC
AAACTTTTGGAACTTTTGGATGAATAT TAT GAT GAAGACAATAATTTCCTAGAGATGTA
TAGAACGGGATATAAGGT CAACATTAACGAACTTCTCTCTATTATGTGTTTCTCGGGTT
TTAAAAATTAT GGAAATATCGAAATGATTACACCGGGTCTTAATGGTAAAACATCTTTG
TTTAGCTTACCAGATTCTATAAACTTACAAGATTATGGGTTCATCAAAAGCTCTATTGC
CAAAGGGTTAACGTTTGAAGAATATGCTACAATCGTAAAACAAGAAGCTTTTCCACAAA
TTGTTAATGTTACAACTGGTACTTCACAAACAGGATTTTTGGGGAAAAAAATGGT TAAA
ATGGCTTCTGAATTC



Why are cells different?

* The trillions of cells in human body
are organized into >200 major
tissue types, each customized for a
particular role, for example
— Red blood cells carry life-giving |

oxygen to every corner of your body. o/

— Nerve cells sling chemical and

electrical messages that allow you to
think and move.

. o
Blood Cells

— Heart cells constantly pump blood,
enabling life itself.



Question

e Q: What make those cells different?

e Cells contain the same genetic information (3
billion DNA base pairs, 25,000 )



Flow of Genetic Information

DNA ..ATGCTC... (Gene)
T !
M;{‘*M%*m‘ transcription (Gene Expression)
I "

RNA | ..UACGAT..

\J

Protein

Gene expression is the process by which information from a
gene is used in the synthesis of a functional gene product.



Why are cells different?

* Q: Since the cells contain the same
genetic information (3 billion DNA
based pairs), what make them
different?

* A:The ~25,000 genes in our DNA ™
are like a tool kit, are used (i.e.,
expressed) by different cells in
different ways at different time.

* Gene expression is regulated by 20 (2
different cells. -



Studying the Expression of Groups of Genes

A major goal of biologists is to learn how genes
act together to produce and maintain a
functioning organism.

Large groups of genes are studied by a systems
approach.

Such approaches allow networks of expression
across a genome to be identified.

Genome-wide expression studies can be carried
out using RNA-seq or microarray assay.



Transcriptome

Transcriptome: How to genome-wide measure the
expression of those genes? How to get the gene
expression profiles.

gene expression profiling is the measurement of the

expression of thousands of genes at once, to create a
global picture of cellular functions.

These profiles can distinguish between cells that
actively dividing, or show how the cells react to a
particular treatment.

Gene regulation network: who regulates those genes
expression.



What is RNA-seq?

 RNA-seq refers to the method of using Next-
Generation Sequencing technology to
measure RNA levels.



Applications of RNA-seq

Gene expression
— Expression of individual genes/loci

— Quantitatively discriminate isoforms using
junction reads and coverage of individual exons,
introns, etc.

Annotation

— New features of the transcriptome: genes, exons,
splicing, ncRNAs

SNP
Fusion gene detection



Comparison between different
technologies

Technology

Technology specifications

Principle

Resolution

Throughput

Reliance on genomic sequence

Background noise

Application

Simultaneously map transcribed regions and gene expression
Dynamic range to quantify gene expression level
Ability to distinguish different isoforms

Ability to distinguish allelic expression

Practical issues

Required amount of RNA

Cost for mapping transcriptomes of large genomes

Tiling microarray

Hybridization

From several to 100 bp
High

Yes

High

Yes

Up to a few-hundredfold
Limited

Limited

High
High

cDNA or EST sequencing

Sanger sequencing
Single base

Low

No

Low

Limited for gene expression
Not practical
Yes

Yes

High
High

RNA-Seq

High-throughput sequencing
Single base

High

In some cases

Low

Yes
>8,000-fold
Yes
Yes

Low

Relatively low



Some Advantages of RNA-seq over
Microarrays

* Microarrays measure only genes corresponding to
predetermined probes on a microarray while RNA-seq
measures any transcripts in a sample.

* With RNA-seq, there is no need to identify probes prior
to measurement or to build a microarray.

* RNA-seq provides count data which may be closer, at
least in principle, to the amount of mMRNA produced by a
gene than the fluorescence measures produced with

microarray technology.



Some Advantages of RNA-seq over
Microarrays

* RNA-seq provides information about transcript sequence
in addition to information about transcript abundance.

* Thus, with RNA-seq, it is possible to separately measure
the expression of different transcripts that would be
difficult to separately measure with microarray
technology due to cross hybridization.

* Sequence information also permits the identification of
alternative splicing, allele specific expression, single
nucleotide polymorphisms (SNPs), and other forms of
seguence variation.



Extract sufficient mRNA from total
using either poly-A selection or
depletion of rRNA (RiboMinus).

Non-poly(A) RNA) can yield important
noncoding RNA gene discovery

reads are aligned with the
reference genome

Wang, Gerstein, Snyser, 2009
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Examples of RNA-seq

> Gene "KLK3"
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Examples of RNA-seq

Coverage plot for gene ERBB2 in breast cancer
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RNA-seq analysis pipeline




Steps involved on RNA-seq analysis

Experimental design

* Preprocess
— Split by barcodes
— Quality control and removal of poor-quality reads
— Remove adapters and linkers

 Map the reads

 Count how many reads fall within each feature of interest
(gene, transcript, exon etc).

— Remove absent genes and add offset (such as 1)
— Prevent dividing by O
— Moderate fold change of low-count genes

* Normalization

* |dentify differentially expressed genes.



Experimental design

* Include replicates in your experiment.
— drawn from a single RNA-seq experiment can be
misleading.
e Estimate the number of reads needed for an
experiment.

— Depends on the organism and the level of the
differences you want to detect.



Coverage Requirements: How many
lanes/plates/wells?

Depends on

Read length

Size of transcriptome
Complexity of tissue
Biological variance
System errors



How many lanes do we need?

Table 1. Power to detect differentially expressed genes depends
on the number of lanes used for each sample

Overlap Correlation of fold
Differentially  with genes changes between
No. of lanes expressed called from  the sequence data
compared genes the array and the array
One vs. one 5670 4208 0.67
Two vs. two 7994 5340 0.70
Three vs. three 9482 5909 0.71
Four vs. four 10,580 6278 0.72

Five vs. five 11,493 6534 0.73
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Number of uniquely mapped tags (million)

A: 80% of yeast genes
were detected at 4
million uniquely
mapped RNA-Seq reads

Wang, Gerstein, Snyser, 2009

Reguirements

Number of mapped tags (million)

Nature Reviews | Genetics

B: The number of unique start
sites detected starts to reach a
plateau when the depth of
sequencing reaches 80 million
in two mouse transcriptomes.



Coverage Requirements
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Differential expression in RNA- seq: A matter of depth. Genome Res. 2011.



Summary of Example lllumina RNA-Seq Data

* 40% of reads mapped uniquely to a genomic location

» Of these, 65% mapped to autosomal or sex chromosomes

lane1 |

Lane 2 | Lane 3 | Lane 4 I Lane 6 | Lane 7 | Lane 8
Solexa Run 1
kidney liver kidney liver liver kidney liver
Concentration (pM) 3 3 3 3 3 3 3
# Reads| 13,017,169 | 14,003,322 | 13,401,343 | 14,230,879 | 13,525,355 | 12,848,201 | 13,096,715
Total Sequence (Mb) 417 448 429 455 433 411 419
# Mapped Reads| 5,025,044 | 5,142,214 | 5,199,295 | 5,167,290 | 4,997,324 | 4,901,266 | 4,822,319
Mapped to chr1-22,X,Y| 3,261,380 | 3,460,175 | 3,369,521 | 3,480,325 | 3,363,455 | 3,179,248 | 3,245,417
Mapped in Genes| 2,706,150 | 2,847,704 | 2,792,026 | 2,861,877 | 2,761,468 | 2,630,987 | 2,668,148
Mapped in Exons| 1,926,217 | 1,815,816 | 1,981,182 | 1,821,860 | 1,752,042 | 1,861,126 | 1,692,041
Solexa Run 2
liver kidney liver kidney kidney liver kidney
Concentration (pM) 1.5 3 3 1.5 3 1.5 1.5
#Reads| 9,096,595 | 13,687,929 | 14,761,931 | 8,843,158 | 13,449,864 | 9,341,101 | 8,449,276
Total Sequence (Mb) 291 438 472 283 430 299 270
# Mapped Reads| 4,138,533 | 5,293,547 | 5,320,141 | 4,394,988 | 5,422,895 | 4,437,111 | 4,266,893
Mapped to chrl-22,X,Y| 2,794,909 | 3,456,114 | 3,591,760 | 2,885,222 | 3,533,100 | 2,989,819 | 2,799,046
Mapped in Genes| 2,328,896 | 2,875,214 | 2,959,436 | 2,416,834 | 2,938,079 | 2,488,832 | 2,345,160
Mapped in Exons| 1,532,142 | 2,055,876 | 1,896,001 | 1,751,854 | 2,096,458 | 1,634,684 | 1,701,056

 Of these, 83% were located in genic regions

* Of those outside...

Marioni and Mason et al, 2008




Coverage Requirements: How many
lanes/plates/wells?

Depends on

Read length

Size of transcriptome
Complexity of tissue
Biological variance
System errors

HiSeq 2000
180-240 million reads/lane
10-20 million reads/sample
10-18 samples / lane



Steps involved on RNA-seq analysis

Experimental design

* Preprocess
— Split by barcodes

— Quality control and removal of poor-quality reads
— Remove adapters and linkers

 Map the reads

 Count how many reads fall within each feature of interest
(gene, transcript, exon etc).

— Remove absent genes and add offset (such as 1)
— Prevent dividing by O
— Moderate fold change of low-count genes

* Normalization

* |dentify differentially expressed genes.



Preprocess

* Split by barcodes

e Conduct quality control and removal of poor-
qguality reads

* Remove adapters and linkers



Adapter

Adaptor and barcode

<
> " — —
B

Sequence of Interest / Adapter

Index

ACAGTG
ACTTGA
ATCACG
barcodes CAGAIC
CGATGT
GATCAG
GCCAAT
GGCTAC
TAGCTT
TGACCA
TTAGGC




Tools for getting high quality reads

* Trimmomatic (http://www.usadellab.org/cms/?page=trimmomatic)

* NGSQC: Cross-Platform Quality Analysis Pipeline for Deep Sequencing Data.
* http://brainarray.mbni.med.umich.edu/brainarray/ngsqc/

 HTQC: a fast quality control toolkit for lllumina sequencing data
* https://sourceforge.net/projects/htqgc




Trimmomatic

v
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Then discard




Steps involved on RNA-seq analysis

Experimental design

* Preprocess
— Split by barcodes

— Quality control and removal of poor-quality reads
— Remove adapters and linkers

 Map the reads

 Count how many reads fall within each feature of interest
(gene, transcript, exon etc).

— Remove absent genes and add offset (such as 1)
— Prevent dividing by O
— Moderate fold change of low-count genes

* Normalization

* |dentify differentially expressed genes.



Short-Read Alignment Tools with indexing

* Indexing Reads with Hash Tables
— ZOOM: uses spaced seeds algorithm [Lin et al 2008]

— RMAP: simpler spaced seeds algorithm [Smith et al
2008]

— SHRIMP: employs a combination of spaced seeds and
the Smith-Waterman

— MAQ [Li et al 2008Db]
— Eland (commercial Solexa Pipeline)
* Indexing Reference with Hash Tables
— SOAPvV1 [Li et al 2008]
* Indexing Reference with Sux Array/Burrows-Wheeler
— Bowtie [Langmead et al 2009]
— BWA
— SOAPV2



Steps involved on RNA-seq analysis

Experimental design

* Preprocess
— Split by barcodes
— Quality control and removal of poor-quality reads
— Remove adapters and linkers

 Map the reads

 Count how many reads fall within each feature of interest
(gene, transcript, exon etc).

— Remove absent genes and add offset (such as 1)
— Prevent dividing by O
— Moderate fold change of low-count genes

* Normalization

* |dentify differentially expressed genes.



Align reads to Genome and count

Gene A
—— .

TTAGCA ACCGAC

ATGGCA

A 3

Gene B Gene C GeneD
B 3

AACGTT

CTAACG

C 0
For a given gene, the number of reads D 2

aligned to the gene measures its expression
level.



Determine Abundance

Count reads in gene, coding area, or exons.

Need gene annotation files in GFF (General Feature

Format) format, which gives complete gene, RNA

transcript or protein structures

Tools:

o Cufflinks (http://cufflinks.cbcb.umd.edu/)

* Sam?2counts (https://github.com/vsbuffalo/
sam2counts)

 HTSeg-count (http://www-huber.embl.de/users/
anders/HTSeq/doc/count.html)



Example Dataset after Aligning Reads

Gene Control Treatment 1
1 14 18 10 47 13 24
2 10 3 15 1 11 5
3 1 0 10 80 21 34
4 0 0 0 0 2 0
5 4 3 3 5 33 29
53256 47 29 11 71 278 339
Total

22910173 30701031 18897029

20546299 28491272 27082148

44



Steps involved on RNA-seq analysis

Experimental design

* Preprocess
— Split by barcodes

— Quality control and removal of poor-quality reads
— Remove adapters and linkers

 Map the reads

 Count how many reads fall within each feature of interest
(gene, transcript, exon etc).

— Remove absent genes and add offset (such as 1)
— Prevent dividing by O
— Moderate fold change of low-count genes

* Normalization

* |dentify differentially expressed genes.



Differential Expression (DE) Analysis

* To determine if gene-1 is DE, we would like to
know whether the proportion of reads
aligning to gene-1 tends to be different for
experimental units that is for control than for
experimental units that received a treatment.

14 out of 22910173 47 out of 20546299
18 out of 30701031 VS. 13 out of 28491272

10 out of 18897029 24 out of 27082148



Need Normalization

* More reads mapped to a transcript if it is
— i) long
— ii) at higher depth of coverage

 Normalize data such that i) features of
different lengths and ii) total sequence from
different conditions can be comparable.



Normalization

Total Count (TC): Gene counts are divided by the total
number of mapped reads

Median (Med): the total counts are replaced by the median
counts different from O

Upper Quartile (UQ): the total counts are replaced by the
upper quartile of counts different from 0
Bullard et al., 2010)

Quantile (Q): was for microarray, Hansen et al., 2012

RPKM (Reads Per Kilobase of exon model per Million
mapped reads) (Mortazavi et al., 2008)

Trimmed Mean of M-values (TMM): used by edgeR
Robinson and Oshlack, 2010

DEseq normalization: Anders and Huber, 2010




Comparison between different
normalization methods

Counts .. .
Minimize

Distribution Housekeeping False-

Intra- 7
across . genes positive rate
Variance
samples

uQ ++ ++ + ++ -
Med ++ ++ - ++ -
DEseq ++ ++ ++ ++ ++
TMM ++ ++ ++ -+ ++
Q ++ - + ++ -
RPKM - + + - -

Dillies et al. Briefings in Bioinformatics, 2012



Steps involved on RNA-seq analysis

Experimental design

* Preprocess
— Split by barcodes

— Quality control and removal of poor-quality reads
— Remove adapters and linkers

 Map the reads

 Count how many reads fall within each feature of interest
(gene, transcript, exon etc).

— Remove absent genes and add offset (such as 1)
— Prevent dividing by O
— Moderate fold change of low-count genes

* Normalization

* Identify differentially expressed genes.



Differentially expressed gene
Analysis Tools

| Tools | swtsts | | | speed_

Empirical Bayes estimation and exact tests based on  Rrobinsonet  High

20/ the negative binomial distribution el A0 TPR mERlE
DEseq Negative binomial distribution. fnders and l'_l'(I)D\g media

Compares replicates within the same condition to Hich Data
NOISeq estimate noise distribution of M (log-ratio ) and D T—mﬁ TI;gR _—
(absolute value of the difference).

Empirical Bayesian methods using the negative Hardcastle
and Kelly, slow

KT binomial distribution. 2010

Averand ~ Data

TSPM Doerge, 2011 gize media

a hierarchical log-normal model and determines the
BitSeq probability of differential expression by Bayesian —‘G'aﬁa"
model averaging

Hu et al.,

POME Poisson mixed-effects model 2012



Performance of different tools
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False positives

Data from MicroArray Quality Control (MAQC) Project

Bullard et al. BMC Bioinformatics, 2010)



Performance of different tools
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Comparison with Microarray

Comparing fold changes

9
I

lllumina sequencing
0
|

o

Affymeqtrix

log, fold changes (liver/kidney)

Red: number of reads > 250 /gene
Green: number of reads < 250 / gene
Black: Genes not called as
differentially expressed

The set of differentially expressed
genes that show the strongest
correlation between the two
technologies seems to be those that
are mapped to by many reads (red),
while the correlation is weaker for
differentially expressed genes
mapped to by fewer reads (green).



